Advertisement

Tribology Letters

, 37:59 | Cite as

Friction and Wear of Thermal Oxidation-Treated Ti3SiC2

  • Shufang Ren
  • Junhu Meng
  • Jingbo Wang
  • Jinjun LuEmail author
  • Shengrong Yang
Original Paper

Abstract

Ti3SiC2 was thermally oxidized (TO) at 1,000 °C for 10 h. An oxide scale of ca. 25 μm was composed of rutile TiO2 and Al2O3 for the outer sub-layer and mixtures of TiO2 and SiO2 for the inner sub-layer. The tribological behavior of Ti3SiC2 and TO–Ti3SiC2 sliding against Si3N4 at 25 and 600 °C was investigated. Results indicated that at both 25 and 600 °C, the oxide scale significantly improved the tribological performance of Ti3SiC2. The wear mechanisms of Ti3SiC2 and TO–Ti3SiC2 sliding against Si3N4 at 25 and 600 °C are briefly discussed.

Keywords

Ti3SiC2 Thermal oxidation Oxide scale Friction and wear 

Notes

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (50675216), the West Doctor Program and the Knowledge Innovation Program of the Chinese Academy of Sciences.

References

  1. 1.
    Barsoum, M.W.: The Mn+1AXn phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000)CrossRefGoogle Scholar
  2. 2.
    Barsoum, M.W., El-Raghy, T.: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996)CrossRefGoogle Scholar
  3. 3.
    Barsoum, M.W., Brodkin, D., El-Raghy, T.: Layered machinable ceramics for high temperature applications. Scripta Mater. 36, 535–541 (1997)CrossRefGoogle Scholar
  4. 4.
    Myhra, S., Summers, J.W.B., Kisi, E.H.: Ti3SiC2—a layered ceramic exhibiting ultra-low friction. Mater. Lett. 39, 6–11 (1999)CrossRefGoogle Scholar
  5. 5.
    El-Raghy, T., Blau, P., Barsoum, M.W.: Effect of grain size on friction and wear behavior of Ti3SiC2. Wear 238, 125–130 (2000)CrossRefGoogle Scholar
  6. 6.
    Souchet, A., Fontaine, J., Belin, M., Le Mogne, T., Loubet, J.-L., Barsoum, M.W.: Tribological duality of Ti3SiC2. Tribol. Lett. 18(3), 314–352 (2005)CrossRefGoogle Scholar
  7. 7.
    Sun, Z., Zhou, Y.: Tribological behavior of Ti3SiC2-based material. J. Mater. Sci. Technol. 18(2), 142–145 (2002)MathSciNetGoogle Scholar
  8. 8.
    Zhang, Y., Ding, G., Zhou, Y., Cai, B.: Ti3SiC2—a self-lubricating ceramic. Mater. Lett. 55, 285–289 (2002)CrossRefGoogle Scholar
  9. 9.
    Hu, C., Zhou, Y., Bao, Y., Wan, D.: Tribological properties of polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites. J. Am. Ceram. Soc. 89(1), 3456–3461 (2006)CrossRefGoogle Scholar
  10. 10.
    Sarkar, D., Manoj Kumar, B.V., Basu, B.: Understanding the fretting wear of Ti3SiC2. J. Eur. Ceram. Soc. 26, 2441–2452 (2006)CrossRefGoogle Scholar
  11. 11.
    Hibi, Y., Miyake, K., Murakami, T., Sasaki, S.: Tribological behavior of SiC-reinforced Ti3SiC2-based composites under dry condition and under lubricated condition with water and ethanol. J. Am. Ceram. Soc. 89(9), 2983–2985 (2006)Google Scholar
  12. 12.
    Ren, S., Meng, J., Lu, J., Yang, S.: Tribological behavior of Ti3SiC2 sliding against Ni-based alloys at elevated temperatures. Tribol. Lett. 31, 129–137 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Huang, Z., Zhai, H., Zhou, W., Zhang, Z., Wang, Y., Ai, M., Zhang, Z., Li, S.: High-speed friction and wear behaviors of bulk Ti3SiC2. Trans. Nonferrous Met. Soc. China 15(2), 266–269 (2005)Google Scholar
  14. 14.
    Zhai, H., Hang, Z., Zhou, Y., Zhang, Z., Wang, Y., Ai, M.: Oxidation layer in sliding friction surface of high-purity Ti3SiC2. J. Mater. Sci. 39, 6635–6637 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Gupta, S., Filimonov, D., Zaitsev, V., Palanisamy, T., Barsoum, M.W.: Ambient and 550 °C tribological behavior of select MAX phases against Ni-based superalloys. Wear 264, 270–278 (2008)CrossRefGoogle Scholar
  16. 16.
    El-Raghy, T., Barsoum, M.W.: Diffusion kinetics of the carburization and silicidation of Ti3SiC2. J. Appl. Phys. 83(1), 112–119 (1998)CrossRefADSGoogle Scholar
  17. 17.
    Li, C., Li, M., Zhou, Y.: Improving the surface hardness and wear resistance of Ti3SiC2 by boronizing treatment. Surf. Coat. Technol. 201, 6005–6011 (2007)CrossRefGoogle Scholar
  18. 18.
    Low, I.M.: Depth profiling of phase composition in a novel Ti3SiC2–TiC system with graded interfaces. Mater. Lett. 58, 927–932 (2004)CrossRefGoogle Scholar
  19. 19.
    Yang, S., Yang, Q., Sun, Z.: Nucleation and growth of diamond on titanium silicon carbide by microwave plasma-enhanced chemical vapor deposition. J. Cryst. Growth 294, 452–458 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Guo, H., Zhang, J., Li, F., Liu, Y., Yin, J., Zhou, Y.: Surface strengthening of Ti3SiC2 through magnetron sputtering Cu and subsequent annealing. J. Eur. Ceram. Soc. 28, 2099–2107 (2008)CrossRefGoogle Scholar
  21. 21.
    Gardos, M.N.: Magnéli phases of anion-deficient rutile as lubricious oxides. Part I. Tribological behavior of single-crystal and polycrystalline rutile (TinO2n−1). Tribol. Lett. 8, 65–78 (2000)CrossRefGoogle Scholar
  22. 22.
    Gardos, M.N., Hong, H.-S., Winer, W.O.: The effect of anion vacancies on the tribological properties of rutile (TiO2-x), Part II: experimental evidence. Tribol. Trans. 22(2), 209–220 (1990)CrossRefGoogle Scholar
  23. 23.
    Gardos, M.N.: The effect of anion vacancies on the tribological properties of rutile (TiO2−x). Tribol. Trans. 31(4), 427–436 (1988)CrossRefGoogle Scholar
  24. 24.
    Gardos, M.N.: The effect of anion vacancies on the tribological properties of rutile (TiO2−x). Tribol. Trans. 32, 30–31 (1989)CrossRefGoogle Scholar
  25. 25.
    Woydt, M.: Tribological characteristics of polycrystalline Magnéli-type titanium dioxides. Tribol. Lett. 8, 117–130 (2000)CrossRefGoogle Scholar
  26. 26.
    Król, S., Ptacek, L., Zalisz, Z., Hepner, M.: Friction and wear properties of titanium and oxidised titanium in dry sliding against hardened C45 steel. J. Mater. Process. Technol. 157–158, 364–369 (2004)CrossRefGoogle Scholar
  27. 27.
    Rama Krishna, D.S., Brama, Y.L., Sun, Y.: Thick rutile layer on titanium for tribological applications. Tribol. Int. 40, 329–334 (2007)CrossRefGoogle Scholar
  28. 28.
    Barsoum, M.W., El-Raghy, T., Ogbuji, L.U.J.T.: Oxidation of Ti3SiC2 in Air. J. Electrochem. Soc. 144(7), 2508–2516 (1997)CrossRefGoogle Scholar
  29. 29.
    Sun, Z., Zhou, Y., Li, M.: High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater. 49, 4347–4353 (2001)CrossRefGoogle Scholar
  30. 30.
    Chen, T., Green, P.M., Jordan, J.L., Hampikian, J.M., Thadhani, N.N.: Oxidation of Ti3SiC2 composites in air. Metall. Mater. Trans. A 33, 1737–1742 (2002)CrossRefGoogle Scholar
  31. 31.
    Sun, Z., Zhou, Y., Li, M.: Oxidation behaviour of Ti3SiC2-based ceramic at 900–1300 °C in air. Corros. Sci. 43, 1095–1109 (2001)CrossRefGoogle Scholar
  32. 32.
    Sun, Z., Zhou, Y., Li, M.: Cyclic-oxidation behavior of Ti3SiC2-base material at 1100 °C. Oxid. Met. 57, 379–394 (2002)CrossRefGoogle Scholar
  33. 33.
    Lee, D.B., Park, S.W.: Oxidation of Ti3SiC2 between 900 and 1200 °C in air. Oxid. Met. 67, 51–66 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shufang Ren
    • 1
    • 2
  • Junhu Meng
    • 1
  • Jingbo Wang
    • 1
  • Jinjun Lu
    • 1
    Email author
  • Shengrong Yang
    • 1
  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations