Tribology Letters

, 37:31 | Cite as

Tribological Properties of Room Temperature Fluorinated Graphite Heat-Treated Under Fluorine Atmosphere

  • K. Delbé
  • P. Thomas
  • D. Himmel
  • J. L. Mansot
  • M. Dubois
  • K. Guérin
  • C. Delabarre
  • A. Hamwi
Original Paper


This work is concerned with the study of the tribologic properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere. The fluorinated compounds all present good intrinsic friction properties (friction coefficient in the range 0.05–0.09). The tribologic performances are optimized if the materials present remaining graphitic domains (influenced by the presence of intercalated fluorinated species) whereas the perfluorinated compounds, where the fluorocarbon layers are corrugated (armchair configuration of the saturated carbon rings) present higher friction coefficients. Raman analyses reveal that the friction process induces severe changes in the materials structure especially the partial re-building of graphitic domains in the case of perfluorinated compounds which explains the improvement of μ during the friction tests for these last materials.


Friction Fluorinated carbons Raman spectroscopy 


  1. 1.
    Kita, Y., Watanabe, N., Fuji, Y.: Chemical composition and crystal structure of graphite fluoride. J. Am. Chem. Soc. 101, 3832–3841 (1979)CrossRefGoogle Scholar
  2. 2.
    Watanabe, N.: Types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics ans mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries. Solid State Ionics 1, 87–110 (1980)CrossRefGoogle Scholar
  3. 3.
    Nakajima, T.: Carbon-fluorine compounds as battery materials. J. Fluorine Chem. 100, 57–61 (1999)CrossRefGoogle Scholar
  4. 4.
    Fusaro, R.L., Sliney, J.E.: Graphite fluoride (CFx)n—a new solid lubricant. ASLE Trans. 13, 56–65 (1970)Google Scholar
  5. 5.
    Fusaro, R.L.: Mechanisms of graphite fluoride (CFx)n lubrication. Wear 53, 303–323 (1979)CrossRefGoogle Scholar
  6. 6.
    Tsuya, Y.: Tribology of graphite fluorides. In: Nakajima, T. (ed.) Fluorine-carbon and fluoride-carbon materials, pp. 355–380. Marcel Dekker, New York (1995)Google Scholar
  7. 7.
    Rüdorff, W., Rüdorff, G.: Tetrakohlenstoffmonofluorid, eine neue Graphit-Fluor-Verbindung. Chem. Ber. 80, 417–423 (1947)CrossRefGoogle Scholar
  8. 8.
    Nakajima, T., Kawaguchi, M., Watanabe, N.: Ternary intercalation compound of graphite with aluminum fluoride and fluorine. Z. Naturforsch. 36b, 1419–1423 (1981)Google Scholar
  9. 9.
    Hamwi, A.: Fluorine reactivity with graphite and fullerenes. Fluoride derivatives and some practical electrochemical applications. J. Phys. Chem. Solids 57, 677–688 (1996)CrossRefADSGoogle Scholar
  10. 10.
    Hamwi, A., Daoud, M., Cousseins, J.C.: Graphite fluorides prepared at room temperature. 1. Synthesis and characterization. Synth. Metals 26, 89–98 (1988)CrossRefGoogle Scholar
  11. 11.
    Dubois, M., Guérin, K., Pinheiro, J.P., Fawal, Z., Masin, F., Hamwi, A.: NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere. Carbon 42, 1931–1940 (2004)CrossRefGoogle Scholar
  12. 12.
    Guérin, K., Pinheiro, J.P., Dubois, M., Fawal, Z., Masin, F., Yazami, R., Hamwi, A.: Synthesis and characterization of highly fluorinated graphite containing sp2 and sp3 carbon. Chem. Mater. 16, 1786–1792 (2004)CrossRefGoogle Scholar
  13. 13.
    Giraudet, J., Dubois, M., Guérin, K., Pinheiro, J.P., Hamwi, A., Stone, W.E.E., Pirotte, P., Masin, F.: Solid-state 19F and 13C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: low-field and high resolution studies. J. Solid State Chem. 178, 1786–1792 (2005)CrossRefGoogle Scholar
  14. 14.
    Delabarre, C., Guérin, K., Dubois, M., Giraudet, J., Fawal, Z., Hamwi, A.: Highly fluorinated graphite prepared from graphite fluoride formed using BF3 catalyst. J. Fluorine Chem. 126, 1078–1087 (2005)CrossRefGoogle Scholar
  15. 15.
    Delabarre, C., Dubois, M., Guérin, K., Fawal, Z., Hamwi, A.: Room temperature graphite fluorination process using chlorine as catalyst. J. Phys. Chem. Solids 67, 1157–1161 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Guérin, K., Yazami, R., Hamwi, A.: Hybrid-type graphite fluoride as cathode material in primary lithium batteries. Electrochem. Solid-State Lett. 7, A159–A162 (2004)CrossRefGoogle Scholar
  17. 17.
    Thomas, P., Delbé, K., Himmel, D., Mansot, J.L., Cadoré, F., Guérin, K., Dubois, M., Delabarre, C., Hamwi, A.: Tribological properties of low-temperature graphite fluorides. Influence of the structure on the lubricating performances. J. Phys. Chem. Solids 67, 1095–1099 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Dresselhaus, M.S., Pimenta, M.A., Ecklund, P.C., Dresselhaus, G.: Raman scattering in fullerenes and related carbon-based materials. In: Weber, W.H., Merlin, R. (eds.) Raman Scattering in Materials Science, pp. 315–364. Springer, New York (2000)Google Scholar
  20. 20.
    Merlin, R., Pinczuk, A., Weber, W.H.: Overview of phonon Raman scattering in solids. In: Weber, W.H., Merlin, R. (eds.) Raman Scattering in Materials Science, pp. 1–29. Springer, New York (2000)Google Scholar
  21. 21.
    Rao, A.M., Fung, A.W.P., di Vittorio, S.L., Dresselhaus, M.S., Dresselhaus, G., Endo, M., Oshida, K., Nakajima, T.: Raman scattering and transmission-electron-microscopy studies of fluorine-intercalated graphite fibers CxF (7.8 ≥ x ≥ 2.9). Phys. Rev. B 45, 6883–6892 (1992)CrossRefADSGoogle Scholar
  22. 22.
    Gupta, V., Nakajima, T., Zemva, B.: Raman scattering of higly fluorinated graphite. J. Fluorine Chem. 110, 145–151 (2001)CrossRefGoogle Scholar
  23. 23.
    Gupta, V., Nakajima, T., Ohzawa, Y., Zemva, B.: A study on the formation of graphite fluorides by Raman spectroscopy. J. Fluorine Chem. 120, 143–150 (2003)CrossRefGoogle Scholar
  24. 24.
    Joly-Pottuz, L., Ohmae, N.: Carbon-based nanolubricants. In: Martin, J.M., Ohmae, N. (eds.) Nanolubricants, pp. 93–147.. Tribology SeriesWiley, New York (2008)CrossRefGoogle Scholar
  25. 25.
    Knight, D.S., White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K. Delbé
    • 1
  • P. Thomas
    • 1
  • D. Himmel
    • 1
  • J. L. Mansot
    • 1
  • M. Dubois
    • 2
  • K. Guérin
    • 2
  • C. Delabarre
    • 2
  • A. Hamwi
    • 2
  1. 1.Groupe de Technologie des Surfaces et Interfaces (GTSI), EA 2432, Faculté des Sciences Exactes et NaturellesUniversité des Antilles et de la GuyanePointe à Pitre CedexFrance
  2. 2.Laboratoire des Matériaux Inorganiques, UMR CNRS-6002Université Blaise Pascal de Clermont-FerrandAubièreFrance

Personalised recommendations