Tribology Letters

, Volume 37, Issue 1, pp 23–29 | Cite as

Determination of Low Wear Rates in Metal-On-Metal Hip Joint Replacements Based on Ultra Trace Element Analysis in Simulator Studies

  • J. P. Kretzer
  • M. Krachler
  • J. Reinders
  • E. Jakubowitz
  • M. Thomsen
  • C. Heisel
Original Paper


Metal-on-metal joint bearings are being increasingly used for total hip arthroplasty. Previous results from simulator tests to determine wear of metal-on-metal bearings exhibited high fluctuations. Consequently, wear tests had to be performed for a long period of time to achieve stable values. The aim of this study was to establish a method for the precise measurement of wear of metal-on-metal bearings. Wear was determined by analyzing the concentrations of particles and selected elements in the test medium (serum) using high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS). The procedure was first validated and compared to gravimetric measurements on two different implant designs and then applied in wear tests on four total hip resurfacing implants. The validation showed a significant reliability of the HR-ICP-MS method (p ≤ 0.02). The final wear test revealed that the HR-ICP-MS method can precisely detect very low wear rates and accurately characterize alterations in wear progression. The duration of simulation can be reduced due to the high detection power and low fluctuation in HR-ICP-MS wear determination analyses. This approach is suitable for test implants with extremely low wear rates.


Chemical analytical techniques Human joints Replacements Biotribology Wear/failure testing devices 

List of Symbols


95%-confidence interval








Ethylene diamine tetraacetic acid


Energy dispersive X-ray analysis


High resolution-inductively coupled plasma-mass spectrometer


Hydrogen peroxide


Intraclass correlation coefficient






Sodium azide


Nitric acid








Polyvinyl chloride


Linear coefficient of correlation


Run-in wear rate [mm3/106 cyc]


Standard deviation


Steady-state wear rate [mm3/106 cyc]

\( \overline{\text{x}} \)



  1. 1.
    Kretzer, J.P., Kleinhans, J.A., Jakubowitz, E., Thomsen, M., Heisel, C.: A meta-analysis of design- and manufacturing-related parameters influencing the wear behavior of metal-on-metal hip joint replacements. J. Orthop. Res. (in press) (2009) [Epub ahead of print]Google Scholar
  2. 2.
    Chan, F.W., Bobyn, J.D., Medley, J.B., Krygier, J.J., Yue, S., Tanzer, M.: Engineering issues and wear performance of metal on metal hip implants. Clin. Orthop. Relat. Res. 333, 96–107 (1996)CrossRefPubMedGoogle Scholar
  3. 3.
    Liao, Y.S.: Wear reduction of large head metal-on-metal implants in a hip simulation study. Trans. Orthop. Res. Soc. 32, 1658 (2007)Google Scholar
  4. 4.
    Rieker, C., Konrad, R., Schon, R.: In vitro comparison of the two hard-hard articulations for total hip replacements. Proc. Inst. Mech. Eng. H 215, 153–160 (2001)CrossRefPubMedGoogle Scholar
  5. 5.
    Bowsher, J.G., Hussain, A., Williams, P., Nevelos, J., Shelton, J.C.: Effect of ion implantation on the tribology of metal-on-metal hip prostheses. J. Arthroplasty 19, 107–111 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    Chan, F.W., Bobyn, J.D., Medley, J.B., Krygier, J.J., Tanzer, M.: The Otto Aufranc Award. Wear and lubrication of metal-on-metal hip implants. Clin. Orthop. Relat. Res. 369, 10–24 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    Firkins, P.J., Tipper, J.L., Saadatzadeh, M.R., Ingham, E., Stone, M.H., Farrar, R., Fisher, J.: Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed. Mater. Eng. 11, 143–157 (2001)PubMedGoogle Scholar
  8. 8.
    Goldsmith, A.A., Dowson, D., Isaac, G.H., Lancaster, J.G.: A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc. Inst. Mech. Eng. H 214, 39–47 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Brown, S.S., Kawanabe, K., Manaka, M., Williams, P., Good, V., Clarke, I.C.: Discerning alumina ball wear from confounding metal transfer artifact. J. Biomed. Mater. Res. B Appl. Biomater. 75, 400–404 (2005)PubMedGoogle Scholar
  10. 10.
    Firkins, P.J., Tipper, J.L., Ingham, E., Stone, M.H., Farrar, R., Fisher, J.: A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis. J. Biomech. 34, 1291–1298 (2001)CrossRefPubMedGoogle Scholar
  11. 11.
    Saikko, V., Pfaff, H.G.: Low wear and friction in alumina/alumina total hip joints: a hip simulator study. Acta Orthop. Scand. 69, 443–448 (1998)PubMedCrossRefGoogle Scholar
  12. 12.
    Bowsher, J.G., Nevelos, J., Williams, P.A., Shelton, J.C.: ‘Severe’ wear challenge to ‘as-cast’ and ‘double heat-treated’ large-diameter metal-on-metal hip bearings. Proc. Inst. Mech. Eng. H 220, 135–143 (2006)PubMedGoogle Scholar
  13. 13.
    Clarke, I.C., Good, V., Williams, P., Schroeder, D., Anissian, L., Stark, A., Oonishi, H., Schuldies, J., Gustafson, G.: Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc. Inst. Mech. Eng. H 214, 331–347 (2000)CrossRefPubMedGoogle Scholar
  14. 14.
    Vassiliou, K., Elfick, A.P., Scholes, S.C., Unsworth, A.: The effect of ‘running-in’ on the tribology and surface morphology of metal-on-metal Birmingham hip resurfacing device in simulator studies. Proc. Inst. Mech. Eng. H 220, 269–277 (2006)PubMedGoogle Scholar
  15. 15.
    Schey, J.A.: Systems view of optimizing metal on metal bearings. Clin. Orthop. Relat. Res. 329S, 115–127 (1996)CrossRefGoogle Scholar
  16. 16.
    Scholes, S.C., Unsworth, A.: The effects of proteins on the friction and lubrication of artificial joints. Proc. Inst. Mech. Eng. H 220, 687–693 (2006)CrossRefPubMedGoogle Scholar
  17. 17.
    Krachler, M.: Environmental applications of single collector high resolution ICP-MS. J. Environ. Monit. 9, 790–804 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    Noordin, S., Schmalzried, T.P., Campbell, P., Amstutz, H.C.: Synovial fluid from patients with prosthetic joint arthroplasty: protein concentration and in vivo wear of polyethylene. Trans. Orthop. Res. Soc. 22, 1022–1023 (1997)Google Scholar
  19. 19.
    Saikko, V.: A 12-station anatomic hip joint simulator. Proc. Inst. Mech. Eng. H 219, 437–448 (2005)CrossRefPubMedGoogle Scholar
  20. 20.
    Angadji, A., Royle, M., Collins, S., Shelton, J.C.: Can lubrication theory predict wear in metal-on-metal hip replacements? 53rd annual meeting of the Orthopaedic Research Society, San Diego, 2007Google Scholar
  21. 21.
    Dowson, D., Hardaker, C., Flett, M., Isaac, G.H.: A hip joint simulator study of the performance of metal-on-metal joints: part II: design. J. Arthroplasty 19, 124–130 (2004)PubMedGoogle Scholar
  22. 22.
    Bills, P., Brown, L., Jiang, X., Blunt, J.: A metrology solution for the orthopaedic industry. J. Phys. Conf. Ser. 13, 316–319 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Richardson, H.A., Clarke, I.C., Williams, P., Donaldson, T., Oonishi, H.: Precision and accuracy in ceramic-on-ceramic wear analyses: influence of simulator test duration. Proc. Inst. Mech. Eng. H 219, 401–405 (2005)PubMedGoogle Scholar
  24. 24.
    Dowson, D.: Tribological principles in metal-on-metal hip joint design. Proc. Inst. Mech. Eng. H 220, 161–171 (2006)PubMedGoogle Scholar
  25. 25.
    Lu, Z., McKellop, H., Liao, P., Benya, P.: Potential thermal artifacts in hip joint wear simulators. J. Biomed. Mater. Res. 48, 458–464 (1999)CrossRefPubMedGoogle Scholar
  26. 26.
    Kothari, M., Bartel, D.L., Booker, J.F.: Surface geometry of retrieved McKee-Farrar total hip replacements. Clin. Orthop. Relat. Res. 329S, 141–147 (1996)CrossRefGoogle Scholar
  27. 27.
    McKellop, H., Park, S.H., Chiesa, R., Doorn, P., Lu, B., Normand, P., Grigoris, P., Amstutz, H.: In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin. Orthop. Relat. Res. 329S, 128–140 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. P. Kretzer
    • 1
  • M. Krachler
    • 2
  • J. Reinders
    • 1
  • E. Jakubowitz
    • 1
  • M. Thomsen
    • 3
  • C. Heisel
    • 4
  1. 1.Laboratory of Biomechanics and Implant Research, Department of OrthopaedicsUniversity of HeidelbergHeidelbergGermany
  2. 2.Institute of Earth SciencesUniversity of HeidelbergHeidelbergGermany
  3. 3.German Red Cross HospitalBaden-BadenGermany
  4. 4.ARCUS SportklinikPforzheimGermany

Personalised recommendations