Tribology Letters

, Volume 36, Issue 1, pp 63–68 | Cite as

Low-Speed Atomistic Simulation of Stick–Slip Friction using Parallel Replica Dynamics

  • Ashlie MartiniEmail author
  • Yalin Dong
  • Danny Perez
  • Arthur F. Voter
Original Paper


Atomic stick–slip friction has been predicted by molecular dynamics simulation and observed in experiments. However, direct quantitative comparison of the two has thus far not been possible because of the large difference between scanning velocities accessible to simulations and experiments. In general, the slowest sliding speeds in MD simulations are at least five orders of magnitude larger than the upper limit available to experimentalists. To take a step toward bridging this gap, we have applied parallel replica dynamics, an accelerated molecular dynamics method, to the simulation of atomic stick–slip. The method allows molecular simulations to run parallel in time in order to extend their duration, thereby enabling lower scanning velocities. We show here that this method is able to predict atomic stick–slip friction accurately and efficiently at scanning speeds several orders of magnitude slower than standard molecular dynamics simulations. The accuracy and usefulness of this method is illustrated by correct prediction of the logarithmic dependence of friction on velocity.


Nanotribology Stick–slip Friction mechanisms 



We are grateful for the contributions of Drs. Robert Carpick, Yuri Mishin, and Vladimir Ivanov and to the National Science Foundation for its support via award CMMI-0758604. Work at Los Alamos National Laboratory (LANL) was supported by the United States Department of Energy (U.S. DOE) Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the LANL Laboratory Directed Research and Development Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC52-06NA25396.


  1. 1.
    Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., Güntherodt, H.-J.: Atomic-scale stick–slip processes on Cu(111). Phys. Rev. B 60, 301–304 (1999)CrossRefGoogle Scholar
  2. 2.
    Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, Ch., Bammerlin, M., Meyer, E., Güntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1174 (2000)PubMedCrossRefADSGoogle Scholar
  3. 3.
    Gao, G., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang, Q., Qi, Y., Hector, L.G., Cagin, T., Goddard., W.A.: Atomic simulations of kinetic friction and its velocity dependence at Al/Al and Al 2 O 3/Al 2 O 3 interfaces. Phys. Rev. B 72, 045406 (2005)CrossRefGoogle Scholar
  5. 5.
    Matsushita, K., Matsukawa, H., Sasaki, N.: Atomic scale friction between clean graphite surfaces. Solid State Commun. 136, 51–55 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Ivashchenko, V.I., Turchi, P.E.A.: Atomic-scale sliding friction of amorphous and nanostructured sic and diamond surfaces. Tribol. Trans. 49, 61–65 (2006)CrossRefGoogle Scholar
  7. 7.
    Leng, Y., Jiang S.: Spanning time scales in dynamic simulations of atomic-scale friction. Tribol. Lett. 11, 111–115 (2000)CrossRefGoogle Scholar
  8. 8.
    Voter, A.F.: Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, 13985–13988 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Uberuaga, B.P., Stuart, S.J., Voter, A.F.: Parallel replica dynamics for driven systems: derivation and application to strained nanotubes. Phys. Rev. B 75, 014301 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Melchionna, S.: Design of quasisymplectic propagators for langevin dynamics. J. Chem. Phys. 127, 044108 (2007)PubMedCrossRefADSGoogle Scholar
  12. 12.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D Appl. Phys. 41, 123001 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996)CrossRefADSGoogle Scholar
  14. 14.
    Harrison, J.A., White, C.T. Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B 46, 9700–9708 (1992)CrossRefADSGoogle Scholar
  15. 15.
    Mishin, Y., Suzuki, A., Uberuaga, B.P., Voter, A.F.: Stick–slip behavior of grain boundaries studied by accelerated molecular dynamics. Phys. Rev. B 75, 224101 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)PubMedCrossRefADSGoogle Scholar
  17. 17.
    Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ashlie Martini
    • 1
    Email author
  • Yalin Dong
    • 1
  • Danny Perez
    • 2
  • Arthur F. Voter
    • 2
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Theoretical Division T-1Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations