Tribology Letters

, Volume 36, Issue 1, pp 1–16 | Cite as

Hybrid Atomistic/Continuum Study of Contact and Friction Between Rough Solids

Original Paper


A hybrid simulation method is used to study the effect of atomic structure and self-affine roughness on non-adhesive contact and friction between two-dimensional surfaces. Rough-on-flat and rough-on-rough contact are compared as a function of system size up to several micrometers. In order to contrast elastic and plastic behavior, interactions within the deformable substrate are either harmonic or Lennard-Jones. The ratio of lattice constants in the solids is varied to examine the effect of commensurability. In all cases the true area of contact rises linearly with load, but the slope is much larger than expected from continuum calculations. These calculations considered a continuous distribution of surface heights that is appropriate for large scales, rather than the discrete height distribution of the crystalline surfaces used here. The ratio of contact area to load depends on the ratio of lattice constants in the solids and varies with system size in small systems that deform plastically. While some dislocations are observed, plasticity is dominated by an asperity flattening mechanism where surface atoms are displaced into a lower layer. The kinetic friction rises linearly with load and is independent of system size, as predicted by Amontons’s laws. Variations in friction with commensurability are smaller for rough surfaces than for flat surfaces, because most of the contact area is in small patches. Asperity flattening increases patch sizes and thus the effect of commensurability on friction. Rough-on-rough contact leads to additional friction associated with the local slope of the contacting regions.


Nanotribology Contact mechanics Friction mechanisms 



This material is based upon work supported by the National Science Foundation under Grant No. DMR-0454947. The authors are grateful to Noam Bernstein, Sangil Hyun, and Jean-Francois Molinari for their collaboration in developing the code used here.


  1. 1.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1986)Google Scholar
  2. 2.
    Greenwood, J.A.: A unified theory of surface roughness. Proc. R. Soc. Lond. A 393, 133–157 (1984)CrossRefADSGoogle Scholar
  3. 3.
    Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. Cambridge, Cambridge (1998)MATHGoogle Scholar
  4. 4.
    Krim, J., Palasantzas, G.: Experimental observation of self-affine scaling and kinetic roughening at sub-micron lengthscales. Int. J. Mod. Phys. B 9, 599–632 (1995)CrossRefADSGoogle Scholar
  5. 5.
    Johnson, K.L.: Contact Mechanics. Cambridge, New York (1985)MATHGoogle Scholar
  6. 6.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A 295, 300–319 (1966)CrossRefADSGoogle Scholar
  7. 7.
    Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35, 87–111 (1975)CrossRefGoogle Scholar
  8. 8.
    Polycarpou, A.A., Etsion, I.: Analytical approximations in modeling contacting rough surfaces. ASME J. Tribol. 121, 234–239 (1999)CrossRefGoogle Scholar
  9. 9.
    Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101 (2001)PubMedCrossRefADSGoogle Scholar
  10. 10.
    Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)CrossRefADSGoogle Scholar
  11. 11.
    Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. 77, 38005 (2007)CrossRefADSGoogle Scholar
  12. 12.
    Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422 (2007)CrossRefGoogle Scholar
  13. 13.
    Ciavarella, M., Murolo, C., Demelio, G.: On the elastic contact of rough surfaces: numerical experiments and comparisons with recent theories. Wear 261, 1102–1113 (2006)CrossRefGoogle Scholar
  14. 14.
    Carbone, G., Bottiglione, F.: Asperity contact theories: do they predict linearity between contact area and load?. J. Mech. Phys. Solids 56, 2555–2572 (2008)CrossRefADSMATHGoogle Scholar
  15. 15.
    Pei, L., Hyun, S., Molinari, J.-F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Sol. 53, 2385–2409 (2005)MATHCrossRefADSGoogle Scholar
  16. 16.
    Gao Y.F., Bower A.F. (2005) Elastic-plastic contact of a rough surface with Weierstrass profile. Proc. R. Soc. A 462:319–348CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Polonsky, I.A., Keer, L.M.: Scale effects of elastic-plastic behavior of microscopic asperity contacts. ASME J. Tribol. 118, 335–340 (1996)CrossRefGoogle Scholar
  18. 18.
    Hutchinson, J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)PubMedCrossRefADSGoogle Scholar
  20. 20.
    Luan, B.Q., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atmoistic simulations. Phys. Rev. E 74, 02611 (2006)Google Scholar
  21. 21.
    Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990)CrossRefADSGoogle Scholar
  22. 22.
    Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001)PubMedCrossRefADSGoogle Scholar
  23. 23.
    Müser, M.H.: Dry friction between flat surfaces: wearless multistable elasticity vs. material transfer and plastic deformation. Tribol. Lett. 10, 15–22 (2001)CrossRefGoogle Scholar
  24. 24.
    Müser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)CrossRefGoogle Scholar
  25. 25.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W. M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)PubMedCrossRefADSGoogle Scholar
  26. 26.
    Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 78, 1448–1451 (1997)CrossRefADSGoogle Scholar
  27. 27.
    Krim, J., Solina, D.H., Chiarello, R.: Nanotribology of a Kr monolayer: a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181–184 (1991)PubMedCrossRefADSGoogle Scholar
  28. 28.
    Dietzel, D., Ritter, C., Möninghoof, T., Fuchs, H., Schirmeisen, A., Schwarz, U.D.: Frictional duality observed during nanoparticle sliding. Phys. Rev. Lett. 101, 125505 (2008)PubMedCrossRefADSGoogle Scholar
  29. 29.
    Martin, J.M., Donnet, C., Mogne, T.L., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583–10586 (1993)CrossRefADSGoogle Scholar
  30. 30.
    He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284, 1650–1652 (1999)PubMedCrossRefADSGoogle Scholar
  31. 31.
    He, G., Robbins, M.O.: Simulations of the kinetic friction due to adsorbed molecules. Tribol. Lett. 10, 7–14 (2001)CrossRefGoogle Scholar
  32. 32.
    Luan, B., Hyun, S., Robbins, M.O., Bernstein, N.: Multiscale modeling of two dimensional rough surface contacts. In: Wahl, K.J., Huber, N., Mann, A.B., Bahr, D.F., Cheng, Y.-T. (eds.) Fundamentals of Nanoindentation and Nanotribology, vol. 841, p. R7.4. Materials Research Society, Warrendale (2005)Google Scholar
  33. 33.
    Tartaglino, U., Samoilov, V.N., Persson, B.N.J.: Role of surface roughness in superlubricity. J. Phys. Condens. Matter. 18, 4143–4160 (2006)CrossRefADSGoogle Scholar
  34. 34.
    Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E 74, 046710 (2006)CrossRefADSGoogle Scholar
  35. 35.
    Hughes T.J.R., Belytschko T. (1983) A precise of developments in computational methods for transient analysis. J. Appl. Mech. 50:1033MATHCrossRefGoogle Scholar
  36. 36.
    Voss, R.F., Random fractal forgeries. In: Earnshaw, R.A. (ed.) Fundamental Algorithms in Computer Graphics, p. 805. Springer-Verlag, Berlin (1985)Google Scholar
  37. 37.
    Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 100, 024303 (2008)PubMedCrossRefADSGoogle Scholar
  38. 38.
    Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys.: Condens. Matter. 20, 215214 (2008)CrossRefADSGoogle Scholar
  39. 39.
    Webster, N.M., Sayles, R.S.: A numerical model for the elastic frictionless contact of real rough surfaces. J. Tribol. 108, 314–320 (1986)CrossRefGoogle Scholar
  40. 40.
    Ciavarella, M., Demelio, G., Barber, J.R., Jang, Y.H.: Linear elastic contact of the Weierstrass profile. Proc. R. Soc. Lond. A 456, 387–405 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Manners, W., Greenwood, J.A.: Some observations on Persson’s diffusion theory of elastic contact. Wear 261, 600–610 (2006)CrossRefGoogle Scholar
  42. 42.
    Müser, M.H.: Rigorous field-theoretical approach to the contact mechanics of rough elastic solids. Phys. Rev. Lett. 100, 055504 (2008)PubMedCrossRefADSGoogle Scholar
  43. 43.
    Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys.: Condens. Matter. 20, 312001 (2008)CrossRefADSGoogle Scholar
  44. 44.
    Campañá, C., Müser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys.: Condens. Matter. 20, 354013 (2008)CrossRefGoogle Scholar
  45. 45.
    Miller, R.E., Shilkrot, L.E., Curtin, W.A.: A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. Acta Mater. 52, 271–284 (2004)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Watts, E.T., Krim, J., Widom, A.: Experimental observation of interfacial slippage at the boundary of molecularly thin films with gold substrates. Phys. Rev. B 41, 3466–3472 (1990)CrossRefADSGoogle Scholar
  47. 47.
    Cieplak, M., Smith, E.D., Robbins, M.O.: Molecular origins of friction: the force on adsorbed layers. Science 265, 1209–1212 (1994)PubMedCrossRefADSGoogle Scholar
  48. 48.
    Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel-Kontorova model. Phys. Rep. 306, 1–108 (1998)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Steele, W.A.: The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated absorbed atoms. Surf. Sci. 36, 317–352 (1973)CrossRefADSGoogle Scholar
  50. 50.
    Persson, B.N.J., Siveback, I.M., Samoilov, V.N., Zhao, K., Volokitin, A.I., Zhang, Z.: On the origin of Amontons’ friction law. J. Phys.: Condens. Matter. 20, 395006 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA
  2. 2.IBM Physical Sciences DivisionYorktown HeightsUSA

Personalised recommendations