Advertisement

Tribology Letters

, Volume 35, Issue 3, pp 151–158 | Cite as

Effect of Flash Temperature on Tribological Properties of Bulk Metallic Glasses

  • Jian KongEmail author
  • Dangsheng Xiong
  • Jianliang Li
  • Qunxing Yuan
  • Rajnesh Tyagi
Original Paper

Abstract

The tribological properties of Cu-based and Zr-based bulk metallic glasses (BMGs) sliding against Si3N4 under dry and water lubrication were studied on a pin-on-disc tribometer. The wear mechanisms of bulk metallic glasses were investigated based on the calculated flash temperature. The friction coefficients if fully amorphous alloy are about 0.7, while those of BMGs with nanocrytalline are a little higher. The wear rates of Cu-based BMG (V101) are about one order of magnitude lower than those of Zr-based BMG (Vit1) under dry friction, even two orders of magnitude lower under water lubrication. The wear resistance of bulk metallic glasses was influenced by the flash temperature. The calculated flash temperature (3,337 K) on the friction surface of Zr-based amorphous alloy exceeds its glass transition temperature, even its melting temperature. The high flash temperature leads to glass transition accompanied with viscous flow and material transfer, which is responsible for the poor wear resistance of Zr-based BMGs.

Keywords

Bulk metallic glass Friction and wear Flash temperature Nanocrystalline 

Notes

Acknowledgments

The works was supported by National Natural Science Foundation of China (project number: 50575106), Natural Science Foundation of Jiangsu Province of China (BK2006206) and (kjsmcx06002), and Young Scholar Foundation of Nanjing University of Science and Technology (project number: AB41325).

References

  1. 1.
    Inoue, A., Takeuchi, A.: Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng. A 375–377, 16–20 (2004). doi: 10.1016/j.msea.2003.10.159 Google Scholar
  2. 2.
    Hiromoto, S., Tsai, A.P., Sumita, M., Hanawa, T.: Corrosion behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloys for biomedical use. Mater. Trans. 41, 654–659 (2000)Google Scholar
  3. 3.
    Greer, A.L.: Metallic glasses. Curr. Opin. Solid State Mater. Sci. 2(4), 412–416 (1997)CrossRefGoogle Scholar
  4. 4.
    Fleury, E., Lee, S.M., Ahn, H.S., Kim, W.T., Kim, D.H.: Tribological properties of bulk metallic glasses. Mater. Sci. Eng. A 375–377, 276–279 (2004). doi: 10.1016/j.msea.2003.10.065 Google Scholar
  5. 5.
    Yokoyama, Y., Yamano, K., Fukaura, K., Sunada, H., Inoue, A.: Nanocrystalline Zr-based bulk glassy alloys with high flexural strength. Mater. Trans. 40, 1015–1018 (1999)Google Scholar
  6. 6.
    Ma, M.Z., Liu, R.P., Xiao, Y., Lou, D.C., Liu, L., Wang, Q., Wang, W.K.: Wear resistance of Zr-based bulk metallic glass applied in bearing rollers. Mater. Sci. Eng. A 386, 326–330 (2004)Google Scholar
  7. 7.
    Tam, C.Y., Shek, C.H.: Abrasive wear of Cu60Zr30Ti10 bulk metallic glass. Mater. Sci. Eng. A 384, 138–142 (2004). doi: 10.1016/j.msea.2004.05.073 CrossRefGoogle Scholar
  8. 8.
    Fu, X.Y., Rigney, D.A., Falk, M.L.: Sliding and deformation of metallic glass: experiments and MD simulations. J. Non-Cryst. Solids 317, 206–214 (2002). doi: 10.1016/S0022-3093(02)01999-3 CrossRefGoogle Scholar
  9. 9.
    Fu, X.Y., Kasai, T., Falk, M.L., Rigney, D.A.: Sliding behavior of metallic glass Part I. Experimental investigations. Wear 250, 409–419 (2001). doi: 10.1016/S0043-1648(01)00605-6 CrossRefGoogle Scholar
  10. 10.
    Fu, X.Y., Rigney, D.A., Falk, M.L.: Sliding behavior of metallic glass Part II. Computer simulations. Wear 250, 420–430 (2001). doi: 10.1016/S0043-1648(01)00607-X CrossRefGoogle Scholar
  11. 11.
    Yavari, A.R., Botta Filho, W.J., Rodrigues, C.A.D., Greer, A.L., Uriarte, J.L., Huenen, G., Vaughan, G., Inoue, A.: FeNiB-based metallic glasses with fcc crystallisation products. J. Non-Cryst. Solids 304, 44–50 (2002). doi: 10.1016/S0022-3093(02)01002-5 CrossRefADSGoogle Scholar
  12. 12.
    Calin, M., Eckert, J., Schultz, L.: Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scr. Mater. 48, 653–658 (2003). doi: 10.1016/S1359-6462(02)00560-2 CrossRefGoogle Scholar
  13. 13.
    Gloriant, T.: Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials. J. Non-Cryst. Solids 316, 96–103 (2003). doi: 10.1016/S0022-3093(02)01941-5 CrossRefADSGoogle Scholar
  14. 14.
    Yokoyama, Y., Yamano, K., Fukaura, K., Sunada, H., Inoue, A.: Nanocrystalline Zr-based bulk glassy alloys with high flexural strength. Mater. Trans. 40, 1015–1018 (1999)Google Scholar
  15. 15.
    Venkataraman, S., Stoica, M., Scudino, S., Gemming, T., Mickel, C., Kunz, U., Kim, K.B., Schultz, L., Eckert, J.: Revisiting the Cu47Ti33Zr11Ni8Si1 glass-forming alloy. Scr. Mater. 54, 835–840 (2006). doi: 10.1016/j.scriptamat.2005.11.007 CrossRefGoogle Scholar
  16. 16.
    Fleury, E., Lee, S.M., Ahn, H.S., Kim, W.T., Kim, D.H.: Tribological properties of bulk metallic glasses. Mater. Sci. Eng. A 375–377, 276–279 (2004). doi: 10.1016/j.msea.2003.10.065 Google Scholar
  17. 17.
    Lim, S.C., Ashby, M.F.: Wear mechanism maps. Acta Metall. 35(1), 1–24 (1987). doi: 10.1016/0001-6160(87)90209-4 CrossRefGoogle Scholar
  18. 18.
    Bossuyt, S.: Micostructure and crystallization behavior in bulk glass forming alloys, PH.D. Thesis, California Institute of Technology (2001)Google Scholar
  19. 19.
    Aydiner, C.C., Ustundag, E., Prime, M.B., Peker, A.: Modeling and measurement of residual stresses in a bulk metallic glass plate. J. Non-Cryst. Solids 316, 82–95 (2003). doi: 10.1016/S0022-3093(02)01940-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian Kong
    • 1
    Email author
  • Dangsheng Xiong
    • 1
  • Jianliang Li
    • 1
  • Qunxing Yuan
    • 1
  • Rajnesh Tyagi
    • 1
  1. 1.Department of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations