Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular Orientation, Crystallinity, and Topographical Changes in Sliding and their Frictional Effects for UHMWPE Film

Abstract

This paper presents a study on the frictional anisotropy of semi-crystalline UHMWPE polymer film deposited on DLC-overcoated Si substrate. For UHMWPE film slid against a silicon nitride ball, there is a remarkable difference in the coefficient of friction between the forward and reverse directions after the slider has been initially slid against the film for certain number of cycles. The changes in the friction are greatly influenced by the initial number of sliding cycles. This frictional behavior is explained in terms of crystallinity change and molecular orientational effects on UHMWPE and micro-topographical effects due to the initial sliding. Nanoscratch test is conducted to understand the friction of the polymer film in the sliding track and the data are compared with the macroscale friction data. The results show that the friction in the reverse of the initial sliding direction is high in comparison to that in the forward direction and this behavior mainly depends upon the number of initial sliding cycles. The initial sliding cycles affect the crystallinity and molecular orientation of the film, as well as the film topography. This combined effect on the polymer film results in an anisotropic frictional behavior of the film.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A.: Biomaterials 20, 1659 (1999). doi:10.1016/S0142-9612(99)00053-8

  2. 2.

    Satyanarayana, N., Sinha, S.K., Ong, B.H.: Sens. Actuators A Phys. 128(1), 98 (2006). doi:10.1016/j.sna.2005.12.042

  3. 3.

    Minn, M., Sinha, S.K.: Surf. Coat. Technol. 202, 3698 (2008). doi:10.1016/j.surfcoat.2008.01.012

  4. 4.

    Muratoglu, O.K., Bragdon, C.R., O’Connor, D.O., Jasty, M., Harris, W.H., Gul, R., McGarry, F.: Biomaterials 20, 1463 (1999). doi:10.1016/S0142-9612(99)00039-3

  5. 5.

    Wang, A., Sun, D.C., Yau, S.S., Edwards, B., Sokol, M., Essner, A., Polineni, V.K., Stark, C., Dumbleton, J.H.: Wear 203, 230 (1997). doi:10.1016/S0043-1648(96)07362-0

  6. 6.

    Edidin, A.A., Pruitt, L., Jewett, C.W., Crane, D.J., Roberts, D., Kurtz, S.M.: J. Arthroplasty 14(5), 616 (1999). doi:10.1016/S0883-5403(99)90086-4

  7. 7.

    McKellop, H., Shen, F.-W., Lu, B., Campbell, P., Salovey, R.: J. Orthop. Res. 17(2), 157 (1999). doi:10.1002/jor.1100170203

  8. 8.

    Muratoglu, O.K., Bragdon, C.R., O’Connor, D.O., Jasty, M., Harris, W.H.: J. Arthroplasty 16(2), 1 (2001). doi:10.1054/arth.2001.20540

  9. 9.

    Shi, W., Li, X.Y., Dong, H.: Wear 250, 544 (2001). doi:10.1016/S0043-1648(01)00636-6

  10. 10.

    Ge, S., Wang, Q., Zhang, D., Zhu, H., Xiong, D., Huang, C., Huang, X.: Wear 255, 1069 (2003). doi:10.1016/S0043-1648(03)00269-2

  11. 11.

    Yasuniwa, M., Nakafuku, C.: Polym. J. 19(7), 805 (1987). doi:10.1295/polymj.19.805

  12. 12.

    Shahin, M.M., Olley, R.H., Bassett, D.C., Maxwell, A.S., Unwin, A.P., Ward, I.M.: J. Mater. Sci. 31(20), 5541 (1996). doi:10.1007/BF01159328

  13. 13.

    Yasuniwa, M., Tsubakihara, S., Yamaguchi, M.: J. Polym. Sci. B 35(4), 535 (1997)

  14. 14.

    Simis, K.S., Bistolfi, A., Bellare, A., Pruitt, L.A.: Biomaterials 27, 1688 (2006). doi:10.1016/j.biomaterials.2005.09.033

  15. 15.

    Sperling, L.H.: Introduction to physical polymer science. Wiley, Hoboken, NJ (2006)

  16. 16.

    Rees, D.V., Bassett, D.C.: Nature 219, 368 (1968). doi:10.1038/219368a0

  17. 17.

    Rees, D.V., Bassett, D.C.: J. Polym. Sci. B 7, 273 (1969). doi:10.1002/pol.1969.110070406

  18. 18.

    Bassett, D.C., Carder, D.R.: Philos. Mag. 8, 513 (1973). doi:10.1080/14786437308221000

  19. 19.

    Voigt-Martin, I.G., Fisher, E.W., Mandelkern, L.: J. Polym. Sci. B 18, 2347 (1980)

  20. 20.

    Uehara, H., Nakae, M., Kanamoto, T., Ohtsu, O., Sano, A., Matsuura, K.: Polymer 39, 6127 (1998). doi:10.1016/S0032-3861(98)00102-5

  21. 21.

    Kanamoto, T., Ohama, T., Tanaka, K., Takeda, M., Porter, R.S.: Polymer 28, 1517 (1987). doi:10.1016/0032-3861(87)90352-1

  22. 22.

    Uehara, H., Kanamoto, T., Kawaguchi, A., Murakami, S.: Macromolecules 29, 1540 (1996). doi:10.1021/ma951222y

  23. 23.

    Oral, E., Malhi, A.S., Muratoglu, O.K.: Biomaterials 27, 917 (2006). doi:10.1016/j.biomaterials.2005.06.025

  24. 24.

    Pooley, C.M., Tabor, D.: Proc. R. Soc. Lond. A 329, 251 (1972)

  25. 25.

    Tanaka, K., Miyata, T.: Wear 41, 383 (1977). doi:10.1016/0043-1648(77)90016-3

  26. 26.

    Minn, M., Leong, J.Y., Sinha, S.K.: J. Phys. D: Appl. Phys. 41, 055307 (2008)

  27. 27.

    Tay, B.K., Sheeja, D., Choong, Y.S., Lau, S.P., Shi, X.: Diamond Relat. Mater. 9, 819 (2000)

  28. 28.

    Cole, K.C., Ajji, A., Ward, I.M., Coated, P.D., Dumoulin, M.M.: Characterization of orientation in solid phase processing of polymers. Carl Hanser Publications, Munich (2000)

  29. 29.

    Elliott, A.: Infra-red spectra and structure of organic long-chain polymers, p. 48. Edward Arnold (Publishers) Ltd, London (1969)

  30. 30.

    Alves, A.L.S., Nascimento, L.F.C., Suarez, J.C.M.: Polym. Test. 24, 104 (2005)

  31. 31.

    Davey, S.M., Orr, J.F., Buchanan, F.J., Nixon, J.R., Bennett, D.: Strain 40, 203 (2004)

  32. 32.

    Gorokhovskii, G.A., Agulov, I.: Mech. Compos. Mater. 2, 1–61 (1966)

  33. 33.

    Gracias, D.H., Somorjai, G.A.: Macromolecules 31, 1269 (1998)

  34. 34.

    Turell, M.B., Bellare, A.: Biomaterials 25, 3389 (2004)

  35. 35.

    Rieger, J., Mansfield, M.: Macromolecules 22, 810 (1989)

  36. 36.

    Albrecht, T., Strobl, G.: Macromolecules 28, 5827 (1995)

Download references

Acknowledgments

This study was funded by a research grant from the Faculty of Engineering, NUS (#R-265-000-248-112). The authors would like to acknowledge Ms. Shen Lu for her assistance in the use of nanoscratching and nanoindentation, and Ms. Toh Mei Ling for FTIR. Both of them are from the Institute of Materials Research and Engineering, Singapore. We also wish to thank Mr. K. C. Chung, Ticona Representative Office, Singapore, for donating UHMWPE powder for this study. One of the authors (M. Minn) would like to acknowledge the Graduate School of Engineering, NUS for the scholarship awarded to support for his studies at NUS.

Author information

Correspondence to Sujeet K. Sinha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Minn, M., Sinha, S.K. Molecular Orientation, Crystallinity, and Topographical Changes in Sliding and their Frictional Effects for UHMWPE Film. Tribol Lett 34, 133 (2009). https://doi.org/10.1007/s11249-009-9419-5

Download citation

Keywords

  • Crystallinity
  • Friction
  • Orientation
  • Sliding direction
  • UHMWPE