Tribology Letters

, 34:133 | Cite as

Molecular Orientation, Crystallinity, and Topographical Changes in Sliding and their Frictional Effects for UHMWPE Film

Original Paper


This paper presents a study on the frictional anisotropy of semi-crystalline UHMWPE polymer film deposited on DLC-overcoated Si substrate. For UHMWPE film slid against a silicon nitride ball, there is a remarkable difference in the coefficient of friction between the forward and reverse directions after the slider has been initially slid against the film for certain number of cycles. The changes in the friction are greatly influenced by the initial number of sliding cycles. This frictional behavior is explained in terms of crystallinity change and molecular orientational effects on UHMWPE and micro-topographical effects due to the initial sliding. Nanoscratch test is conducted to understand the friction of the polymer film in the sliding track and the data are compared with the macroscale friction data. The results show that the friction in the reverse of the initial sliding direction is high in comparison to that in the forward direction and this behavior mainly depends upon the number of initial sliding cycles. The initial sliding cycles affect the crystallinity and molecular orientation of the film, as well as the film topography. This combined effect on the polymer film results in an anisotropic frictional behavior of the film.


Crystallinity Friction Orientation Sliding direction UHMWPE 



This study was funded by a research grant from the Faculty of Engineering, NUS (#R-265-000-248-112). The authors would like to acknowledge Ms. Shen Lu for her assistance in the use of nanoscratching and nanoindentation, and Ms. Toh Mei Ling for FTIR. Both of them are from the Institute of Materials Research and Engineering, Singapore. We also wish to thank Mr. K. C. Chung, Ticona Representative Office, Singapore, for donating UHMWPE powder for this study. One of the authors (M. Minn) would like to acknowledge the Graduate School of Engineering, NUS for the scholarship awarded to support for his studies at NUS.


  1. 1.
    Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A.: Biomaterials 20, 1659 (1999). doi: 10.1016/S0142-9612(99)00053-8 PubMedCrossRefGoogle Scholar
  2. 2.
    Satyanarayana, N., Sinha, S.K., Ong, B.H.: Sens. Actuators A Phys. 128(1), 98 (2006). doi: 10.1016/j.sna.2005.12.042 CrossRefGoogle Scholar
  3. 3.
    Minn, M., Sinha, S.K.: Surf. Coat. Technol. 202, 3698 (2008). doi: 10.1016/j.surfcoat.2008.01.012 CrossRefGoogle Scholar
  4. 4.
    Muratoglu, O.K., Bragdon, C.R., O’Connor, D.O., Jasty, M., Harris, W.H., Gul, R., McGarry, F.: Biomaterials 20, 1463 (1999). doi: 10.1016/S0142-9612(99)00039-3 PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, A., Sun, D.C., Yau, S.S., Edwards, B., Sokol, M., Essner, A., Polineni, V.K., Stark, C., Dumbleton, J.H.: Wear 203, 230 (1997). doi: 10.1016/S0043-1648(96)07362-0 CrossRefGoogle Scholar
  6. 6.
    Edidin, A.A., Pruitt, L., Jewett, C.W., Crane, D.J., Roberts, D., Kurtz, S.M.: J. Arthroplasty 14(5), 616 (1999). doi: 10.1016/S0883-5403(99)90086-4 PubMedCrossRefGoogle Scholar
  7. 7.
    McKellop, H., Shen, F.-W., Lu, B., Campbell, P., Salovey, R.: J. Orthop. Res. 17(2), 157 (1999). doi: 10.1002/jor.1100170203 PubMedCrossRefGoogle Scholar
  8. 8.
    Muratoglu, O.K., Bragdon, C.R., O’Connor, D.O., Jasty, M., Harris, W.H.: J. Arthroplasty 16(2), 1 (2001). doi: 10.1054/arth.2001.20540 CrossRefGoogle Scholar
  9. 9.
    Shi, W., Li, X.Y., Dong, H.: Wear 250, 544 (2001). doi: 10.1016/S0043-1648(01)00636-6 CrossRefGoogle Scholar
  10. 10.
    Ge, S., Wang, Q., Zhang, D., Zhu, H., Xiong, D., Huang, C., Huang, X.: Wear 255, 1069 (2003). doi: 10.1016/S0043-1648(03)00269-2 CrossRefGoogle Scholar
  11. 11.
    Yasuniwa, M., Nakafuku, C.: Polym. J. 19(7), 805 (1987). doi: 10.1295/polymj.19.805 CrossRefGoogle Scholar
  12. 12.
    Shahin, M.M., Olley, R.H., Bassett, D.C., Maxwell, A.S., Unwin, A.P., Ward, I.M.: J. Mater. Sci. 31(20), 5541 (1996). doi: 10.1007/BF01159328 CrossRefADSGoogle Scholar
  13. 13.
    Yasuniwa, M., Tsubakihara, S., Yamaguchi, M.: J. Polym. Sci. B 35(4), 535 (1997)CrossRefGoogle Scholar
  14. 14.
    Simis, K.S., Bistolfi, A., Bellare, A., Pruitt, L.A.: Biomaterials 27, 1688 (2006). doi: 10.1016/j.biomaterials.2005.09.033 PubMedCrossRefGoogle Scholar
  15. 15.
    Sperling, L.H.: Introduction to physical polymer science. Wiley, Hoboken, NJ (2006)Google Scholar
  16. 16.
    Rees, D.V., Bassett, D.C.: Nature 219, 368 (1968). doi: 10.1038/219368a0 CrossRefADSGoogle Scholar
  17. 17.
    Rees, D.V., Bassett, D.C.: J. Polym. Sci. B 7, 273 (1969). doi: 10.1002/pol.1969.110070406 CrossRefGoogle Scholar
  18. 18.
    Bassett, D.C., Carder, D.R.: Philos. Mag. 8, 513 (1973). doi: 10.1080/14786437308221000 CrossRefADSGoogle Scholar
  19. 19.
    Voigt-Martin, I.G., Fisher, E.W., Mandelkern, L.: J. Polym. Sci. B 18, 2347 (1980)Google Scholar
  20. 20.
    Uehara, H., Nakae, M., Kanamoto, T., Ohtsu, O., Sano, A., Matsuura, K.: Polymer 39, 6127 (1998). doi: 10.1016/S0032-3861(98)00102-5 CrossRefGoogle Scholar
  21. 21.
    Kanamoto, T., Ohama, T., Tanaka, K., Takeda, M., Porter, R.S.: Polymer 28, 1517 (1987). doi: 10.1016/0032-3861(87)90352-1 CrossRefGoogle Scholar
  22. 22.
    Uehara, H., Kanamoto, T., Kawaguchi, A., Murakami, S.: Macromolecules 29, 1540 (1996). doi: 10.1021/ma951222y CrossRefADSGoogle Scholar
  23. 23.
    Oral, E., Malhi, A.S., Muratoglu, O.K.: Biomaterials 27, 917 (2006). doi: 10.1016/j.biomaterials.2005.06.025 PubMedCrossRefGoogle Scholar
  24. 24.
    Pooley, C.M., Tabor, D.: Proc. R. Soc. Lond. A 329, 251 (1972)CrossRefADSGoogle Scholar
  25. 25.
    Tanaka, K., Miyata, T.: Wear 41, 383 (1977). doi: 10.1016/0043-1648(77)90016-3 CrossRefGoogle Scholar
  26. 26.
    Minn, M., Leong, J.Y., Sinha, S.K.: J. Phys. D: Appl. Phys. 41, 055307 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Tay, B.K., Sheeja, D., Choong, Y.S., Lau, S.P., Shi, X.: Diamond Relat. Mater. 9, 819 (2000)CrossRefGoogle Scholar
  28. 28.
    Cole, K.C., Ajji, A., Ward, I.M., Coated, P.D., Dumoulin, M.M.: Characterization of orientation in solid phase processing of polymers. Carl Hanser Publications, Munich (2000)Google Scholar
  29. 29.
    Elliott, A.: Infra-red spectra and structure of organic long-chain polymers, p. 48. Edward Arnold (Publishers) Ltd, London (1969)Google Scholar
  30. 30.
    Alves, A.L.S., Nascimento, L.F.C., Suarez, J.C.M.: Polym. Test. 24, 104 (2005)CrossRefGoogle Scholar
  31. 31.
    Davey, S.M., Orr, J.F., Buchanan, F.J., Nixon, J.R., Bennett, D.: Strain 40, 203 (2004)CrossRefGoogle Scholar
  32. 32.
    Gorokhovskii, G.A., Agulov, I.: Mech. Compos. Mater. 2, 1–61 (1966)Google Scholar
  33. 33.
    Gracias, D.H., Somorjai, G.A.: Macromolecules 31, 1269 (1998)CrossRefADSGoogle Scholar
  34. 34.
    Turell, M.B., Bellare, A.: Biomaterials 25, 3389 (2004)PubMedCrossRefGoogle Scholar
  35. 35.
    Rieger, J., Mansfield, M.: Macromolecules 22, 810 (1989)Google Scholar
  36. 36.
    Albrecht, T., Strobl, G.: Macromolecules 28, 5827 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations