Tribology Letters

, 34:81 | Cite as

Fabrication, Characterisation and Tribological Investigation of Artificial Skin Surface Lipid Films

  • L.-C. Gerhardt
  • A. Schiller
  • B. Müller
  • N. D. Spencer
  • S. Derler
Original Paper

Abstract

This article deals with the tribology of lipid coatings that resemble those found on human skin. In order to simulate the lipidic surface chemistry of human skin, an artificial sebum formulation that closely resembles human sebum was spray-coated onto mechanical skin models in physiologically relevant concentrations (5–100 μg/cm2). Water contact angles and surface free energies (SFEs) showed that model surfaces with ≤25 μg/cm2 lipids appropriately mimic the physico-chemical properties of dry, sebum-poor skin regions. In friction experiments with a steel ball, lipid-coated model surfaces demonstrated lubrication effects over a wide range of sliding velocities and normal loads. In friction measurements on model surfaces as a function of lipid-film thickness, a clear minimum in the friction coefficient (COF) was observed in the case of hydrophilic, high-SFE materials (steel, glass), with the lowest COF (≈0.5) against skin model surfaces being found at 25 μg/cm2 lipids. For hydrophobic, low-SFE polymers, the COF was considerably lower (0.4 for PP, 0.16 for PTFE) and relatively independent of the lipid amount, indicating that both the mechanical and surface-chemical properties of the sliders strongly influence the friction behaviour of the skin-model surfaces. Lipid-coated skin models might be a valuable tool not only for tribologists but also for cosmetic chemists, in that they allow the objective study of friction, adhesion and wetting behaviour of liquids and emulsions on simulated skin-surface conditions.

Keywords

Biotribology Skin model Sebum Lubrication Friction Adhesion Deformation Contact-angle Surface free energy Glass Steel Polymers 

References

  1. 1.
    Agache, P., Humbert, P.: Measuring the Skin—Non-Invasive Investigations, Physiology, Normal Constants. Springer-Verlag, Berlin (2004)Google Scholar
  2. 2.
    Elias, P.M.: Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 80, 44S–49S (1983). doi:10.1111/1523-1747.ep12537108 PubMedCrossRefGoogle Scholar
  3. 3.
    Michniak, B.B., Wertz, P.W.: Water-lipid interactions. In: Fluhr, J.W., Elsner, P., Berardesca, E., Maibach, H.I. (eds.) Bioengineering of the Skin: Water and the Stratum Corneum, pp. 3–14. CRC Press, Boca Raton (2005)Google Scholar
  4. 4.
    Bouwstra, J.A., Gooris, G.S., Cheng, K., Weerheim, A., Bras, W., Ponec, M.: Phase behavior of isolated skin lipids. J. Lipid Res. 37, 999–1011 (1996)PubMedGoogle Scholar
  5. 5.
    Bouwstra, J.A., Gooris, G.S., Dubbelaar, F.E., Ponec, M.: Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid Res. 42, 1759–1770 (2001)PubMedGoogle Scholar
  6. 6.
    de Jager, M.W., Gooris, G.S., Ponec, M., Bouwstra, J.A.: Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. J. Lipid Res. 46, 2649–2656 (2005). doi:10.1194/jlr.M500221-JLR200 PubMedCrossRefGoogle Scholar
  7. 7.
    Laugel, C., Yagoubi, N., Baillet, A.: ATR-FTIR spectroscopy: a chemometric approach for studying the lipid organisation of the stratum corneum. Chem. Phys. Lipids 135, 55–68 (2005). doi:10.1016/j.chemphyslip.2005.02.001 PubMedCrossRefGoogle Scholar
  8. 8.
    Moore, D.J., Snyder, R.G., Rerek, M.E., Mendelsohn, R.: Kinetics of membrane raft formation: fatty acid domains in stratum corneum lipid models. J. Phys. Chem. B 110, 2378–2386 (2006). doi:10.1021/jp054875h PubMedCrossRefGoogle Scholar
  9. 9.
    de Jager, M., Groenink, W., van der Spek, J., Janmaat, C., Gooris, G., Ponec, M., Bouwstra, J.: Preparation and characterization of a stratum corneum substitute for in vitro percutaneous penetration studies. Biochim. Biophys. Acta Biomembr. 1758, 636–644 (2006). doi:10.1016/j.bbamem.2006.04.001 CrossRefGoogle Scholar
  10. 10.
    Groen, D., Gooris, G.S., Ponec, M., Bouwstra, J.A.: Two new methods for preparing a unique stratum corneum substitute. Biochim. Biophys. Acta Biomembr. 1778, 2421–2429 (2008). doi:10.1016/j.bbamem.2008.06.015 CrossRefGoogle Scholar
  11. 11.
    Charkoudian, J.C.: A model skin surface for testing adhesion to skin. J. Soc. Cosmet. Chem. 39, 225–234 (1988)Google Scholar
  12. 12.
    Bhuyan, S., Sundararajan, S., Yao, L., Hammond, E.G., Wang, T.: Boundary lubrication properties of lipid-based compounds evaluated using microtribological methods. Tribol. Lett. 22, 167–172 (2006). doi:10.1007/s11249-006-9076-x CrossRefGoogle Scholar
  13. 13.
    Elleuch, K., Elleuch, R., Zahouani, H.: Comparison of elastic and tactile behavior of human skin and elastomeric materials through tribological tests. Polym. Eng. Sci. 46, 1715–1720 (2006). doi:10.1002/pen.20637 CrossRefGoogle Scholar
  14. 14.
    Ramkumar, S.S., Wood, D.J., Fox, K., Harlock, S.C.: Developing a polymeric human finger sensor to study the frictional properties of textiles. Part I: artificial finger development. Text. Res. J. 73, 469–473 (2003). doi:10.1177/004051750307300601 CrossRefGoogle Scholar
  15. 15.
    Derler, S., Schrade, U., Gerhardt, L.-C.: Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263, 1112–1116 (2007). doi:10.1016/j.wear.2006.11.031 CrossRefGoogle Scholar
  16. 16.
    Gupta, A.B., Haldar, B., Bhattacharya, M.: A simple device for measuring skin friction. Int. J. Dermatol. 40, 116–121 (1995)Google Scholar
  17. 17.
    Cua, A.B., Wilhelm, K.P., Maibach, H.I.: Skin surface lipid and skin friction: relation to age, sex and anatomical region. Skin Pharmacol. 8, 246–251 (1995)PubMedCrossRefGoogle Scholar
  18. 18.
    Elkhyat, A., Courderot-Masuyer, C., Gharbi, T., Humbert, P.: Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison. Skin Res. Technol. 10, 215–221 (2004). doi:10.1111/j.1600-0846.2004.00085.x PubMedCrossRefGoogle Scholar
  19. 19.
    Sivamani, R.K., Goodman, J., Gitis, N.V., Maibach, H.I.: Coefficient of friction: tribological studies in man—an overview. Skin Res. Technol. 9, 227–234 (2003). doi:10.1034/j.1600-0846.2003.02366.x PubMedCrossRefGoogle Scholar
  20. 20.
    Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26, 239–253 (2007). doi:10.1007/s11249-007-9206-0 CrossRefGoogle Scholar
  21. 21.
    Gerhardt, L.-C., Strässle, V., Lenz, A., Spencer, N.D., Derler, S.: Influence of epidermal hydration on the friction of human skin against textiles. J. R. Soc. Interface 5, 1317–1328 (2008). doi:10.1098/rsif.2008.0034 PubMedCrossRefGoogle Scholar
  22. 22.
    Derler, S., Gerhardt, L.-C., Lenz, A., Bertaux, E., Hadad, M.: Friction of human skin against smooth and rough glass as a function of the normal load. Tribol. Int. (in press). doi:10.1016/j.triboint.2008.11.009
  23. 23.
    Ramalho, A., Silva, C.L., Pais, A.A.C.C., Sousa, J.J.S.: In vivo friction study of human skin: influence of moisturizers on different anatomical sites. Wear 263, 1044–1049 (2007). doi:10.1016/j.wear.2006.11.051 CrossRefGoogle Scholar
  24. 24.
    Tang, W., Ge, S.-R., Zhu, H., Cao, X.-C., Li, N.: The influence of normal load and sliding speed on frictional properties of skin. J. Bionic Eng. 5, 33–38 (2008). doi:10.1016/S1672-6529(08)60004-9 CrossRefGoogle Scholar
  25. 25.
    Elkhyat, A., Mavon, A., Leduc, M., Agache, P., Humbert, P.: Skin critical surface tension—a way to assess the skin wettability quantitatively. Skin Res. Technol. 2, 91–96 (1996). doi:10.1111/j.1600-0846.1996.tb00066.x CrossRefGoogle Scholar
  26. 26.
    Mavon, A., Zahouani, H., Redoules, D., Agache, P., Gall, Y., Humbert, P.: Sebum and stratum corneum lipids increase human skin surface free energy as determined from contact angle measurements: A study on two anatomical sites. Colloids Surf. B Biointerfaces 8, 147–155 (1997). doi:10.1016/S0927-7765(96)01317-3 CrossRefGoogle Scholar
  27. 27.
    Stefaniak, A.B., Harvey, C.J.: Dissolution of materials in artificial skin surface film liquids. Toxicol. In Vitro 20, 1265–1283 (2006). doi:10.1016/j.tiv.2006.05.011 PubMedCrossRefGoogle Scholar
  28. 28.
    Stefaniak, A.B., Harvey, C.J., Wertz, P.W.: Artificial skin surface film liquids. Part 1: formulation and stability of sebum under conditions of storage and use. Clin. Exp. Dermatol. (submitted)Google Scholar
  29. 29.
    Lagarde, J.M., Rouvrais, C., Black, D.: Topography and anisotropy of the skin surface with ageing. Skin Res. Technol. 11, 110–119 (2005). doi:10.1111/j.1600-0846.2005.00096.x PubMedCrossRefGoogle Scholar
  30. 30.
    Li, L., Mac-Mary, S., Marsaut, D., Sainthillier, J.M., Nouveau, S., Gharbi, T., de Lacharriere, O., Humbert, P.: Age-related changes in skin topography and microcirculation. Arch. Dermatol. Res. 297, 412–416 (2006). doi:10.1007/s00403-005-0628-y PubMedCrossRefGoogle Scholar
  31. 31.
    Gerhardt, L.-C.: Tribology of human skin in contact with medical textiles for decubitus prevention. Ph.D. thesis, ETH Zurich, Zurich (2008)Google Scholar
  32. 32.
    Sheu, H.M., Chao, S.C., Wong, T.W., Yu-Yun Lee, J., Tsai, J.C.: Human skin surface lipid film: an ultrastructural study and interaction with corneocytes and intercellular lipid lamellae of the stratum corneum. Br. J. Dermatol. 140, 385–391 (1999). doi:10.1046/j.1365-2133.1999.02697.x PubMedCrossRefGoogle Scholar
  33. 33.
    Mashaghi, A., Swann, M., Popplewell, J., Textor, M., Reimhult, E.: Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem. 80, 3666–3676 (2008). doi:10.1021/ac800988v PubMedCrossRefGoogle Scholar
  34. 34.
    Kaelble, D.H.: Dispersion-polar surface tension properties of organic solids. J. Adhes. 2, 66–81 (1970). doi:10.1080/0021846708544582 CrossRefGoogle Scholar
  35. 35.
    Owens, D.K., Wendt, R.C.: Estimation of surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969). doi:10.1002/app.1969.070130815 Google Scholar
  36. 36.
    Rabel, W.: Flüssigkeitsgrenzflächen in Theorie und Anwendungstechnik. Phys. Blatt. 33, 151–161 (1977)Google Scholar
  37. 37.
    Walther, F., Davydovskaya, P., Zürcher, S., Kaiser, M., Herberg, H., Gigler, A.M., Stark, R.W.: Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J. Micromech. Microeng. 17, 524–531 (2007). doi:10.1088/0960-1317/17/3/015 CrossRefADSGoogle Scholar
  38. 38.
    Gerhardt, L.-C., Mattle, N., Schrade, G.U., Spencer, N.D., Derler, S.: Study of skin-fabric interactions of relevance to decubitus: friction and contact-pressure measurements. Skin Res. Technol. 14, 77–88 (2008). doi:10.1111/j.1600-0846.2007.00264.x PubMedGoogle Scholar
  39. 39.
    Albertorio, F., Chapa, V.A., Chen, X., Diaz, A.J., Cremer, P.S.: The α, α-(1 → 1) linkage of trehalose is key to anhydrobiotic preservation. J. Am. Chem. Soc. 129, 10567–10574 (2007). doi:10.1021/ja0731266 PubMedCrossRefGoogle Scholar
  40. 40.
    Burton, J.L.: The physical properties of sebum in acne vulgaris. Clin. Sci. 39, 757–767 (1970)PubMedGoogle Scholar
  41. 41.
    Elkhyat, A., Agache, P., Zahouani, H., Humbert, P.: A new method to measure in vivo human skin hydrophobia. Int. J. Cosmet. Sci. 23, 347–352 (2001). doi:10.1046/j.0412-5463.2001.00108.x PubMedCrossRefGoogle Scholar
  42. 42.
    Moore, D.F.: The Friction and Lubrication of Elastomers. Pergamon Press, Oxford, UK (1972)Google Scholar
  43. 43.
    Greenwood, J.A., Tabor, D.: The friction of hard sliders on lubricated rubber: the importance of deformation losses. Proc. Phys. Soc. Lond. 71, 989–1001 (1958). doi:10.1088/0370-1328/71/6/312 CrossRefGoogle Scholar
  44. 44.
    Mate, C.M.: Nanotribology of lubricated and unlubricated carbon overcoats on magnetic disks studied by friction force microscopy. Surf. Coat. Technol. 63, 373–379 (1993). doi:10.1016/0257-8972(93)90270-X CrossRefGoogle Scholar
  45. 45.
    Birley, A.W., Haworth, B., Batchelor, J.: Hardness, friction, surface abrasion and wear. In: Birley, A., Haworth, B., Batchelor, J. (eds.) Physics of Plastics: Processing, Properties and Materials Engineering, pp. 320–326. Hanser Verlag, Munich, Germany (1992)Google Scholar
  46. 46.
    Hornbogen, E., Schäfer, K.: Friction and wear of thermoplastic polymers. In: Rigney, D.A. (ed.) Fundamentals of Friction and Wear of Materials, pp. 409–438. American Society for Metals, Metals Park, Ohio (1981)Google Scholar
  47. 47.
    Ludema, K.C., Tabor, D.: The friction and visco-elastic properties of polymeric solids. Wear 9, 329–348 (1966). doi:10.1016/0043-1648(66)90018-4 CrossRefGoogle Scholar
  48. 48.
    Yamaguchi, Y.: Friction. In: Yamaguchi, Y. (ed.), Tribology of Plastic Materials: Their Characteristics and Applications to Sliding Components, pp. 1–91. Elsevier Science Publishers B.V., Amsterdam, The Netherlands (1990)Google Scholar
  49. 49.
    Koudine, A.A., Barquins, M., Anthoine, P.H., Aubert, L., Lévêque, J.-L.: Frictional properties of skin: proposal of a new approach. Int. J. Cosmet. Sci. 22, 11–20 (2000). doi:10.1046/j.1467-2494.2000.00006.x PubMedCrossRefGoogle Scholar
  50. 50.
    Wolfram, L.J.: Friction of skin. J. Soc. Cosmet. Chem. 34, 465–476 (1983)Google Scholar
  51. 51.
    Derler, S., Huber, R., Feuz, H.-P., Hadad, M.: Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear (accepted)Google Scholar
  52. 52.
    Caravia, L., Dowson, D., Fisher, J., Corkhill, P.H., Tighe, B.J.: Friction and mixed lubrication in soft layer contacts. In: Dowson, D., Taylor, C.M., Childs, T.H.C., Godet, M., Dalmaz, G. (eds.) Thin Films in Tribology, pp. 529–534. Elsevier Science Publishers B.V., Amsterdam, The Netherlands (1993)Google Scholar
  53. 53.
    Dowson, D.: Tribology and the skin surface. In: Wilhelm, K.-P., Elsner, P., Berardesca, E., Maibach, H.I. (eds.) Bioengineering of the Skin: Skin Surface Imaging and Analysis, 1st edn, pp. 159–180. CRC Press, Boca Raton (1997)Google Scholar
  54. 54.
    Callister, J.W.D.: Materials science and engineering: an introduction, 6th edn. John Wiley & Sons, Inc., Hoboken, NJ, USA (2003)Google Scholar
  55. 55.
    Myshkin, N.K., Petrokovets, M.I., Kovalev, A. V.: Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribol. Int. 38, 910–921 (2005). doi:10.1016/j.triboint.2005.07.016 Google Scholar
  56. 56.
    Green, J.-B.D., McDermott, M.T., Porter, M.D., Siperko, L.M.: Nanometer-scale mapping of chemically distinct domains at well-defined organic interfaces using frictional force microscopy. J. Phys. Chem. 99, 10960–10965 (1995). doi:10.1021/j100027a041 CrossRefGoogle Scholar
  57. 57.
    Spori, D.M., Drobek, T., Zürcher, S., Ochsner, M., Sprecher, C., Mühlebach, A., Spencer, N.D.: Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. Langmuir 24, 5411–5417 (2008). doi:10.1021/la800215r PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • L.-C. Gerhardt
    • 1
    • 2
  • A. Schiller
    • 1
  • B. Müller
    • 3
  • N. D. Spencer
    • 2
  • S. Derler
    • 1
  1. 1.Laboratory for Protection and PhysiologyEmpa, Swiss Federal Laboratories for Materials Testing and ResearchSt. GallenSwitzerland
  2. 2.Laboratory for Surface Science and Technology, Department of MaterialsETH ZurichZurichSwitzerland
  3. 3.Laboratory for Advanced FibresEmpa, Swiss Federal Laboratories for Materials Testing and ResearchSt. GallenSwitzerland

Personalised recommendations