Tribology Letters

, Volume 33, Issue 2, pp 143–152 | Cite as

A Novel Method for Quantitative Determination of Ultra-low Wear Rates of Materials, Part I: On Steels

  • Y.-R. Li
  • D. Shakhvorostov
  • G. Pereira
  • A. Lachenwitzer
  • W. N. Lennard
  • P. R. Norton
Original Paper

Abstract

A novel method for the quantitative determination of the wear of materials at very low wear rates is introduced here. The main concept involves implanting gold as a trace marker into the tested materials, and measuring the gold concentration and depth profile before and after the wear tests by Rutherford backscattering (RBS). The amount of gold loss is related to the material loss under the tested conditions. The background concentration of gold in AISI 1095 and 52100 steels has been determined by neutron activation analysis (NAA; ~3 and 33 wt. ppb, respectively). Several fluences (1 × 1015–1 × 1016 atoms/cm2) of gold were implanted into AISI 52100 steel samples in order to evaluate the changes in the mechanical and tribological properties induced by implantation. The new method shows the relative effectiveness for wear prevention of the different tested lubricants with and without antiwear additives. Even the thickness of the antiwear film and the amount of zinc (from zinc dialkyldithiophosphates used as antiwear additives) can be measured by this method.

Keywords

Wear/failure testing devices Wear mechanisms 

References

  1. 1.
    Williams, J.A.: Wear and surface damage. Engineering tribology. Oxford University Press Inc., New York (1994)Google Scholar
  2. 2.
    Ayel, J.: Chapter 7: Engine wear. In: Schilling, A. (ed.) Automobile engine lubrication. Scientific Publications, Shropshire, England (1972)Google Scholar
  3. 3.
    Plint, M., Martyr, A.: Engine testing—theory and practice. Butterworth Heinemann, Oxford (1999)Google Scholar
  4. 4.
    Scherge, M., Shakhvorostov, D., Pohlmann, K.: Fundamental wear mechanisms of metals. Wear 255, 395–400 (2003)CrossRefGoogle Scholar
  5. 5.
    Scherge, M., Martin, J.M., Pohlmann, K.: Characterization of wear debris of systems operated under low wear-rate conditions. Wear 260, 458–461 (2006). doi: 10.1016/j.wear.2005.03.025 CrossRefGoogle Scholar
  6. 6.
    Chen, M., Perry, T., Alpas, A.T.: Ultra-mild wear in eutectic Al–Si alloys. Wear 263(1–6), 552–561 (2007)CrossRefGoogle Scholar
  7. 7.
    Kaspar-Sickermann, W.: Kolbenringverschleibversuche mit radioaktiven Isotopen. Kerntechnik 3(73–84), 301–305 (1961)Google Scholar
  8. 8.
    Kollmann, K., Stegemann, D.: Anwendung radioaktiver isotope fur Forschungsaufgaben des Maschinenbaus. Kerntechnik 4(2), 41–46 (1962)Google Scholar
  9. 9.
    Kollmann, K., Sitzler, H.: Zweikomponenten-Verschleißmessung mittels radioaktiver isotope an Kolbenringen und Gleitlagern von Verbrennungsmotoren. MTZ 24(2), 197–202 (1966)Google Scholar
  10. 10.
    Wall, C.M., Eberle, D.C., Treuhaft, M.B., Arps, J.H.: Technique for high-sensitivity in vitro wear measurement of UHMWPE hip joint liners using radioactive tracer technology. Wear 259(7–12), 964–971 (2005)CrossRefGoogle Scholar
  11. 11.
    Eberle, D.C., Wall, C.M., Treuhaft, M.B.: Applications of radioactive tracer technology in the real-time measurement of wear and corrosion. Wear 259(7–12), 1462–1471 (2005)CrossRefGoogle Scholar
  12. 12.
    Scherge, M., Pohlmann, K., Gerve, A.: Wear measurement using radionuclide-technique (RNT). Wear 254(9), 801–817 (2003). doi: 10.1016/S0043-1648(03)00230-8 CrossRefGoogle Scholar
  13. 13.
    Gervé, A.: Moderne Möglichkeiten der Verschleißmessung mit radioaktiven Isotopen. Zeitschrift für Werkstofftechnik 3(2), 81–86 (1972) Google Scholar
  14. 14.
    Conlon, T.W., Armitage, B.H.: The application of energetic ion beams in the study of wear and porosity. Wear 34(3), 409–418 (1975). doi: 10.1016/0043-1648(75)90107-6 CrossRefGoogle Scholar
  15. 15.
    Delmas, R., Mariet, C., Moskura, M., Guiot, D.: Instrumental neutron activation analysis. http://iramis.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=885 (2008). Accessed 16 Dec 2008
  16. 16.
    Ziegler, J.F.: SRIM—2003 (The Stopping and Range of Ions in Matter). http://www.srim.org/SRIM/SRIM2003.htm (2008). Accessed 16 Dec 2008
  17. 17.
    Oliver, W.C., Pharr, G.M.: An improved technique determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). doi: 10.1557/JMR.1992.1564 CrossRefADSGoogle Scholar
  18. 18.
    Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245, 1–9 (2000). doi: 10.1016/S0043-1648(00)00460-9 CrossRefGoogle Scholar
  19. 19.
    Shakhvorostov, D., Gleising, B., Büscher, R., Dudzinski, W., Fischer, A., Scherge, M.: Microstructure of tribologically induced nanolayers produced at ultra-low wear rates. Wear 263, 1259–1265 (2007). doi: 10.1016/j.wear.2007.01.127 CrossRefGoogle Scholar
  20. 20.
    Shakhvorostov, D., Li, J., Nold, E., Beuchle, G., Scherge, M.: Influence of Cu grain size on running-in related phenomena. Tribol. Lett. 28(3), 307–318 (2007). doi: 10.1007/s11249-007-9274-1 CrossRefGoogle Scholar
  21. 21.
    Budzynski, P., Youssef, A.A., Kamienska, B.: Influence of nitrogen and titanium implantation on the tribological properties of steel. Vacuum 70(2–3), 417–421 (2003). doi: 10.1016/S0042-207X(02)00680-2 CrossRefGoogle Scholar
  22. 22.
    Jianhua, Y., Tonghe, Z.: Tribological properties changes of H13 steel induced by MEVVA Ta ion implantation. Appl. Surf. Sci. 229(1–4), 249–253 (2004). doi: 10.1016/j.apsusc.2004.01.069 CrossRefADSGoogle Scholar
  23. 23.
    Blau, P.J.: Friction and wear transitions of materials: break-in, run-in, wear-in. Noyes Publications, Park Ridge, N.J (1989)Google Scholar
  24. 24.
    Shakhvorostov, D., Jian, L., Nold, E., Beuchle, G., Scherge, M.: Influence of Cu grain size on running-in related phenomena. Tribol. Lett. 28, 307–318 (2007). doi: 10.1007/s11249-007-9274-1 CrossRefGoogle Scholar
  25. 25.
    Fuller, M.L., Fernandez, L.R., Massoumi, G.R., Lennard, W.N., Kasrai, M., Bancroft, G.M.: The use of X-ray absorption spectroscopy for monitoring the thickness of antiwear films from ZDDP. Tribol. Lett. 8, 187–192 (2000). doi: 10.1023/A:1019195404055 CrossRefGoogle Scholar
  26. 26.
    Li, Y.-R., Pereira, G., Kasrai, M., Norton, P.R.: Studies on ZDDP anti-wear films formed under different conditions by XANES spectroscopy, atomic force microscopy and 31P NMR. Tribol. Lett. 28(3), 319–328 (2007). doi: 10.1007/s11249-007-9275-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Y.-R. Li
    • 1
    • 2
  • D. Shakhvorostov
    • 1
  • G. Pereira
    • 1
  • A. Lachenwitzer
    • 1
    • 3
  • W. N. Lennard
    • 1
  • P. R. Norton
    • 1
  1. 1.The University of Western OntarioLondonCanada
  2. 2.Chevron Oronite Company LLCRichmondUSA
  3. 3.Cameco Corporation, PHCF, I&TD-RCPort HopeCanada

Personalised recommendations