Tribology Letters

, Volume 32, Issue 3, pp 159–170 | Cite as

Microstructural and Tribological Properties of A356 Al–Si Alloy Reinforced with Al2O3 Particles

  • Aleksandar Vencl
  • Ilija Bobić
  • Milan T. Jovanović
  • Miroslav Babić
  • Slobodan Mitrović
Original Paper

Abstract

In the present study, the effect of the Al2O3 particles (average size of 12 μm, 3 and 10 wt.%) reinforcement on the microstructure and tribological properties of Al–Si alloy (A356) was investigated. Composites were produced by applying compocasting process. Tribological properties of unreinforced alloy and composites were studied, using pin-on-disc tribometer, under dry sliding conditions at different specific loads and sliding speed of 1 m/s. Microhardness measurements, optical microscope and scanning electron microscope were used for microstructural characterization and investigation of worn surfaces and wear debris. During compocasting of A356 alloy, a transformation from a typical dendritic primary α phase to a non-dendritic rosette-like structure occurred. Composites exhibited better wear resistance compared with unreinforced alloy. Presence of 3 wt.% Al2O3 particles in the composite material affected the wear resistance only at specific loads up to 1 MPa. The wear rate of composite with 10 wt.% Al2O3 particles was nearly two order of the magnitude lower than the wear rate of the matrix alloy. Dominant wear mechanism for all materials was adhesion, with others mechanisms: oxidation, abrasion and delamination as minor ones.

Keywords

Compocasting Al–Si alloy Al2O3 particles Dry sliding Friction Wear 

References

  1. 1.
    Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana 28, 319–334 (2003). doi:10.1007/BF02717141 CrossRefGoogle Scholar
  2. 2.
    Prasad, S.V., Asthana, R.: Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17, 445–453 (2004). doi:10.1023/B:TRIL.0000044492.91991.f3 CrossRefGoogle Scholar
  3. 3.
    Hunt Jr., W.H., Miracle, D.B.: Automotive applications of metal-matrix composites. In: Miracle, D.B., Donaldson, S.L. (eds.) ASM Handbook, vol. 21: Composites, pp. 1029–1032. ASM International, Materials Park (2001)Google Scholar
  4. 4.
    Vencl, A., Rac, A., Bobić, I.: Tribological behaviour of Al-based MMCs and their application in automotive industry. Tribol. Ind. 26, 31–38 (2004)Google Scholar
  5. 5.
    Goñi, J., Egizabal, P., Coleto, J., Mitxelena, I., Guridi, J.R.: High performance automotive and railway components made from novel competitive aluminium composites. Mater. Sci. Technol. 19, 931–934 (2003). doi:10.1179/026708303225004413 CrossRefGoogle Scholar
  6. 6.
    Bialo, D., Zhou, J., Duszczyk, J.: The tribological characteristics of the Al-20Si-3Cu-1 Mg alloy reinforced with Al2O3 particles in relation to the hardness of a mating steel. J. Mater. Sci. 35, 5497–5501 (2000). doi:10.1023/A:1004833315382 CrossRefGoogle Scholar
  7. 7.
    García-Cordovilla, C., Narciso, J., Louis, E.: Abrasive wear resistance of aluminium alloy/ceramic particulate composites. Wear 192, 170–177 (1996). doi:10.1016/0043-1648(95)06801-5 CrossRefGoogle Scholar
  8. 8.
    Yang, L.J.: Wear coefficient equation for aluminium-based matrix composites against steel disc. Wear 255, 579–592 (2003). doi:10.1016/S0043-1648(03)00191-1 CrossRefGoogle Scholar
  9. 9.
    Zou, X.G., Miyahara, H., Yamamoto, K., Ogi, K.: Sliding wear behaviour of Al–Si–Cu composites reinforced with SiC particles. Mater. Sci. Technol. 19, 1519–1526 (2003). doi:10.1179/026708303225007997 CrossRefGoogle Scholar
  10. 10.
    Korkut, M.H.: Effect of particulate reinforcement on wear behaviour of aluminium matrix composites. Mater. Sci. Technol. 20, 73–81 (2004). doi:10.1179/026708304225011289 Google Scholar
  11. 11.
    Miyajima, T., Iwai, Y.: Effects of reinforcements on sliding wear behavior of aluminum matrix composites. Wear 255, 606–616 (2003). doi:10.1016/S0043-1648(03)00066-8 CrossRefGoogle Scholar
  12. 12.
    Wilson, S., Alpas, A.T.: Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear 196, 270–278 (1996). doi:10.1016/0043-1648(96)06923-2 CrossRefGoogle Scholar
  13. 13.
    Sahin, Y., Murphy, S.: The effect of sliding speed and microstructure on the dry wear properties of metal-matrix composites. Wear 214, 98–106 (1998). doi:10.1016/S0043-1648(97)00201-9 CrossRefGoogle Scholar
  14. 14.
    Gomes, J.R., Miranda, A.S., Rocha, L.A., Crnkovic, S.J., Silva, V., Silva, R.F.: Tribological behaviour of SiC particulate reinforced aluminium alloy composites in unlubricated sliding against cost iron. In: Proceedings of 2nd World Tribology Congress, Vienna, Austria, CD Presentations/Papers (2001)Google Scholar
  15. 15.
    Vencl, A., Rac, A.: New wear resistant Al based materials and their application in automotive industry. MVM–Int. J. Veh. Mech. Engines Transp. Syst. 30, 115–139 (2004)Google Scholar
  16. 16.
    Sannino, A.P., Rack, H.J.: Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear 189, 1–19 (1995). doi:10.1016/0043-1648(95)06657-8 CrossRefGoogle Scholar
  17. 17.
    Soma Raju, K., Bhanu Prasad, V.V., Rudrakshi, G.B., Ojha, S.N.: PM processing of Al–Al2O3 composites and their characterisation. Powder Metall. 46, 219–223 (2003). doi:10.1179/003258903225008553 CrossRefGoogle Scholar
  18. 18.
    Jun, D., Yao-hui, L., Si-rong, Y., Wen-fang, L.: Dry sliding friction and wear properties of Al2O3 and carbon short fibres reinforced Al-12Si alloy hybrid composites. Wear 257, 930–940 (2004). doi:10.1016/j.wear.2004.05.009 CrossRefGoogle Scholar
  19. 19.
    Conley, J.G., Huang, J., Asada, J., Akiba, K.: Modeling the effects of cooling rate, hydrogen content, grain refiner and modifier on microporosity formation in Al A356 alloys. Mater. Sci. Eng. A 285, 49–55 (2000). doi:10.1016/S0921-5093(00)00665-1 CrossRefGoogle Scholar
  20. 20.
    Mondolfo, L.F.: Aluminium Alloys, Structure and Properties. Butterworths, London (1979)Google Scholar
  21. 21.
    Paes, M., Zoqui, E.J.: Semi-solid behavior of new Al–Si–Mg alloys for thixoforming. Mater. Sci. Eng. A 406, 63–73 (2005). doi:10.1016/j.msea.2005.07.018 CrossRefGoogle Scholar
  22. 22.
    Yang, X., Jing, Y., Liu, J.: The rheological behavior for thixocasting of semi-solid aluminum alloy (A356). J. Mater. Process. Technol. 130–131, 569–573 (2002). doi:10.1016/S0924-0136(02)00815-4 CrossRefGoogle Scholar
  23. 23.
    de Freitas, E.R., Ferracini Júnior, E.G., Piffer, V.P., Ferrante, M.: Microstructure, material flow and tensile properties of A356 alloy thixoformed parts. Mater. Res. 7, 595–603 (2004). doi:10.1590/S1516-14392004000400013 Google Scholar
  24. 24.
    ISO 6621–3:2000 Internal Combustion Engines—Piston rings—Part 3: Material specifications (2000)Google Scholar
  25. 25.
    Li, R.X., Li, R.D., Zhao, Y.H., He, L.Z., Li, C.X., Guan, H.R., Hu, Z.Q.: Age-hardening behavior of cast Al–Si base alloy. Mater. Lett. 58, 2096–2101 (2004). doi:10.1016/j.matlet.2003.12.027 CrossRefGoogle Scholar
  26. 26.
    Straffelini, G., Bonollo, F., Molinari, A., Tiziani, A.: Influence of matrix hardness on the dry sliding behaviour of 20 vol.% Al2O3–particulate–reinforced 6061 Al metal matrix composite. Wear 211, 192–197 (1997). doi:10.1016/S0043-1648(97)00119-1 CrossRefGoogle Scholar
  27. 27.
    Bowen, R., Scott, D., Seifert, W., Westcott, V.C.: Ferrography. Tribol. Int. 9, 109–115 (1976). doi:10.1016/0301-679X(76)90033-5 CrossRefGoogle Scholar
  28. 28.
    Raadnui, S.: Wear particle analysis—utilization of quantitative computer image analysis: a review. Tribol. Int. 38, 871–878 (2005). doi:10.1016/j.triboint.2005.03.013 CrossRefGoogle Scholar
  29. 29.
    Ferrography, Texaco Technology Ghent, Ghent (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Aleksandar Vencl
    • 1
  • Ilija Bobić
    • 2
  • Milan T. Jovanović
    • 2
  • Miroslav Babić
    • 3
  • Slobodan Mitrović
    • 3
  1. 1.Tribology Laboratory, Mechanical Engineering FacultyUniversity of BelgradeBelgrade 35Serbia
  2. 2.Department of Materials ScienceInstitute of Nuclear Sciences “Vinča”BelgradeSerbia
  3. 3.Tribology Laboratory, Mechanical Engineering FacultyUniversity of KragujevacKragujevacSerbia

Personalised recommendations