Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nano/Microtribological Properties of Ultrathin Functionalized Imidazolium Wear-Resistant Ionic Liquid Films on Single Crystal Silicon

  • 384 Accesses

  • 49 Citations

Abstract

Ionic liquids (ILs) are considered as a new kind of lubricant for micro/nanoelectromechanical system (M/NEMS) due to their excellent thermal and electrical conductivity. However, so far, only few reports have investigated the tribological behavior of molecular thin films of various ILs. Evaluating the nanoscale tribological performance of ILs when applied as a few nanometers-thick film on a substrate is a critical step for their application in MEMS/NEMS devices. To this end, four kinds of ionic liquid carrying methyl, hydroxyl, nitrile, and carboxyl group were synthesized and these molecular thin films were prepared on single crystal silicon wafer by dip-coating method. Film thickness was determined by ellipsometric method. The chemical composition and morphology were characterized by the means of multi-technique X-ray photoelectron spectrometric analysis, and atomic force microscopic (AFM) analysis, respectively. The nano- and microtribological properties of the ionic liquid films were investigated. The morphologies of wear tracks of IL films were examined using a 3D non-contact interferometric microscope. The influence of temperature on friction and adhesion behavior at nanoscale, and the effect of sliding frequency and load on friction coefficient, load bearing capacity, and anti-wear durability at microscale were studied. Corresponding tribological mechanisms of IL films were investigated by AFM and ball-on-plane microtribotester. Friction reduction, adhesion resistance, and durability of IL films were dependent on their cation chemical structures, wettability, and ambient environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48, 179–196 (2000). doi:10.1016/S1359-6454(99)00294-3

  2. 2.

    Bhushan, B.: Springer Handbook of Nanotribology of Nanotechnology, 2nd edn. Springerverlag, Heidelberg, Germany (2007)

  3. 3.

    Sulouffin, R.E., Bhushan, B.: Tribology Issue and Opportunities in MEMS, pp. 109–119. Kluwer Academic, Dordrecht (1998)

  4. 4.

    Liu, H., Bhushan, B.: Investigation of nanotribological and nanomechanical properties of the digital micromirror device by atomic force microscopy. J. Vac. Sci. Technol. A 22, 1388–1396 (2004). doi:10.1116/1.1743050

  5. 5.

    Liu, H., Bhushan, B.: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl space chains. Ultramicroscopy 91, 185–202 (2002). doi:10.1016/S0304-3991(02)00099-2

  6. 6.

    Welton, T.: Room temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 9, 2071–2083 (2005)

  7. 7.

    Wasserscheid, P., Keim, W.: Ionic liquids—new “solutions” for transition metal catalysis. Chem. Int. Ed. 39, 3772–3789 (2000)

  8. 8.

    Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Roger, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001). doi:10.1039/b103275p

  9. 9.

    Dupont, J., Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002). doi:10.1021/cr010338r

  10. 10.

    Roger, R.D., Seddon, K.R.: Ionic Liquids: Industrial Applications for Green Chemistry. ACS Symposium Series 818 American Chemical Society, Washington, DC (2002)

  11. 11.

    Ye, C.F., Liu, W.M., Chen, Y.X., Yu, L.G.: Room temperature ionic liquids: a kind of novel versatile lubricant. Chem. Commun. 1, 2244–2245 (2001). doi:10.1039/b106935g

  12. 12.

    Liu, X., Zhou, F., Liang, Y., Liu, W.: Benzotriazole as the additive for ionic liquid lubricant: one pathway towards actual application of ionic liquids. Tribol. Lett. 23, 191–196 (2006). doi:10.1007/s11249-006-9050-7

  13. 13.

    Xia, Y.Q., Sasaki, S., Murakami, T., Nakano, M., Shi, L., Wang, H.Z.: Ionic liquid lubrication of electrodeposited nickel–Si3N4 composite coatings. Wear 262, 765–771 (2007). doi:10.1016/j.wear.2006.06.015

  14. 14.

    Bonhote, P., Dias, A., Papageoriou, N., Kalyanasundaram, K., Gratzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996). doi:10.1021/ic951325x

  15. 15.

    Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.J.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006). doi:10.1007/s11249-006-9081-0

  16. 16.

    Liu, X.Q., Zhou, F., Liang, Y.M., Liu, W.M.: Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261, 1174–1179 (2006). doi:10.1016/j.wear.2006.03.018

  17. 17.

    Jimenez, A.E., Bernudez, M.D., Carrion, F.J., Nicolas, G.M.: Room temperature ionic liquids as lubricant additives in steel-aluminium contact: influence of sliding velocity, normal load and temperature. Wear 261, 347–359 (2006). doi:10.1016/j.wear.2005.11.004

  18. 18.

    Liu, W.M., Ye, C.F., Gong, Q.Y., Wang, H.Z., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002). doi:10.1023/A:1020148514877

  19. 19.

    Bhushan, B., Palacio, M., Kinzig, B.: AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films. J. Colloid Interface Sci. 317, 275–287 (2008). doi:10.1016/j.jcis.2007.09.046

  20. 20.

    Van Valkenburg, M.E., Vaughn, R.L., Williams, M., Wikes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005). doi:10.1016/j.tca.2004.11.013

  21. 21.

    Tao, Z., Bhushan, B.: Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants. Wear 259, 1352–1361 (2005). doi:10.1016/j.wear.2005.01.013

  22. 22.

    Caporiccio, G., Flabbi, L., Marchionniand, G., Viola, G.T.: The properties and applications of perfluoropolyether lubricants. J Synth Lubr 6, 133–149 (1989). doi:10.1002/jsl.3000060205

  23. 23.

    Mori, S., Morales, W.: Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature. Wear 132, 111–121 (1989). doi:10.1016/0043-1648(89)90206-8

  24. 24.

    Bo, Y., Zhou, F., Mu, Z.G., Liang, Y.M., Liu, W.M.: Tribological properties of ultra-thin ionic liquid films on single-crystal silicon wafers with functionalized surfaces. Tribol Int. 39, 879–887 (2006). doi:10.1016/j.triboint.2005.07.039

  25. 25.

    Tsukruk, V.V., Bliznyuk, V.N.: Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces. Langmuir 14, 446–455 (1998). doi:10.1021/la970367q

  26. 26.

    Xiao, X.D., Qian, L.M.: Investigation of humidity-dependent capillary force. Langmuir 16, 8153–8158 (2000). doi:10.1021/la000770o

  27. 27.

    Bhushan, B.: Handbook of Micro/Nano Tribology, 2nd edn. CRC Press, Boca Raton, FL (1994)

Download references

Acknowledgment

This work was funded by National Natural Science Foundation of China (NSFC) under Grant Number 50675217 and National 973 Program: 2007CB607601.

Author information

Correspondence to Mingwu Bai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mo, Y., Zhao, W., Zhu, M. et al. Nano/Microtribological Properties of Ultrathin Functionalized Imidazolium Wear-Resistant Ionic Liquid Films on Single Crystal Silicon. Tribol Lett 32, 143–151 (2008). https://doi.org/10.1007/s11249-008-9371-9

Download citation

Keywords

  • Ionic liquid
  • Lubricant
  • Thin film
  • Atomic force microscopy
  • Friction
  • Wear