Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings

  • 714 Accesses

  • 42 Citations


Studies to explore the nature of friction, and in particular thermally activated friction in macroscopic tribology, have lead to a series of experiments on thin coatings of molybdenum disulfide. Coatings of predominately molybdenum disulfide were selected for these experiments; five different coatings were used: MoS2/Ni, MoS2/Ti, MoS2/Sb2O3, MoS2/C/Sb2O3, and MoS2/Au/Sb2O3. The temperatures were varied over a range from −80 °C to 180 °C. The friction coefficients tended to increase with decreasing temperature. Activation energies were estimated to be between 2 and 10 kJ/mol from data fitting with an Arrhenius function. Subsequent room temperature wear rate measurements of these films under dry nitrogen conditions at ambient temperature demonstrated that the steady-state wear behavior of these coatings varied dramatically over a range of K = 7 × 10−6 to 2 × 10−8 mm3/(Nm). It was further shown that an inverse relationship between wear rate and the sensitivity of friction coefficient with temperature exists. The highest wear-rate coatings showed nearly athermal friction behavior, while the most wear resistant coatings showed thermally activated behavior. Finally, it is hypothesized that thermally activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to systems experiencing gross wear.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Michael, P., Rabinowicz, E., Iwasa, Y.: Friction and wear of polymeric materials at 293-k, 77-k and 4.2-k. Cryogenics 31, 695–704 (1991). doi:10.1016/0011-2275(91)90230-T

  2. 2.

    Theiler, G., Hubner, W., Gradt, T., Klein, P., Friedrich, K.: Friction and wear of ptfe composites at cryogenic temperatures. Tribol. Int. 35, 449–458 (2002). doi:10.1016/S0301-679X(02)00035-X

  3. 3.

    Hubner, W., Gradt, T., Schneider, T., Borner, H.: Tribological behaviour of materials at cryogenic temperatures. Wear 216, 150–159 (1998). doi:10.1016/S0043-1648(97)00187-7

  4. 4.

    Burris, D.L., Perry, S.S., Sawyer, W.G.: Macroscopic evidence of thermally activated friction with polytetrafluoroethylene. Tribol. Lett. 27, 323–328 (2007). doi:10.1007/s11249-007-9237-6

  5. 5.

    McCook, N.L., Burris, D.L., Dickrell, P.L., Sawyer, W.G.: Cryogenic friction behavior of ptfe based solid lubricant composites. Tribol. Lett. 20, 109–113 (2005). doi:10.1007/s11249-005-8300-4

  6. 6.

    Ostrovskaya, Y., Yukhno, T., Gamulya, G., Vvedenskij, Y., Kuleba, V.: Low temperature tribology at the b. Verkin institute for low temperature physics & engineering (historical review). Tribol. Int. 34, 265–276 (2001). doi:10.1016/S0301-679X(01)00010-X

  7. 7.

    Yukhno, T.P., Vvedensky, Y.V., Sentyurikhina, L.N.: Low temperature investigations on frictional behaviour and wear resistance of solid lubricant coatings. Tribol. Int. 34, 293–298 (2001). doi:10.1016/S0301-679X(01)00013-5

  8. 8.

    Zhao, X., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)

  9. 9.

    Michael, P.C., Rabinowicz, E., Iwasa, Y.: Thermal activation in boundary lubricated friction. Wear 193, 218–225 (1996). doi:10.1016/0043-1648(95)06722-1

  10. 10.

    Dickrell, P.L., Pal, S.K., Bourne, G.R., Muratore, C., Voevodin, A.A., Ajayan, P.M., et al.: Tunable friction behavior of oriented carbon nanotube films. Tribol. Lett. 24, 85–90 (2006). doi:10.1007/s11249-006-9162-0

  11. 11.

    Friedrich, K., Kargerkocsis, J., Lu, Z.: Effects of steel counterface roughness and temperature on the friction and wear of pe(e)k composites under dry sliding conditions. Wear 148, 235–247 (1991). doi:10.1016/0043-1648(91)90287-5

  12. 12.

    Pleskachevsky, Y.M., Smurugov, V.A.: Thermal fluctuations of ptfe friction and transfer. Wear 209, 123–127 (1997). doi:10.1016/S0043-1648(97)00034-3

  13. 13.

    Blanchet, T., Kennedy, F.: Sliding wear mechanism of polytetrafluoroethylene (ptfe) and ptfe composites. Wear 153, 229–243 (1992). doi:10.1016/0043-1648(92)90271-9

  14. 14.

    McLaren, K., Tabor, D.: Visco-elastic properties and friction of solids—friction of polymers—influence of speed and temperature. Nature 197, 856–858 (1963)

  15. 15.

    Pooley, C.M., Tabor, D.: Friction and molecular structure—behavior of some thermoplastics. Proc. R. Soc. Lond. A-Math Phys. Sci. 329, 251–274 (1972)

  16. 16.

    Tanaka, K., Uchiyama, Y., Toyooka, S.: Mechanism of wear of poytetrafluoroethylene. Wear 23, 153–172 (1973). doi:10.1016/0043-1648(73)90081-1

  17. 17.

    Burton, J., Taborek, P., Rutledge, J.: Temperature dependence of friction under cryogenic conditions in vacuum. Tribol. Lett. 23, 131–137 (2006). doi:10.1007/s11249-006-9115-7

  18. 18.

    Dvorak, S.D., Wahl, K.J., Singer, I.L.: In situ analysis of third body contributions to sliding friction of a pb-mo-s coating in dry and humid air. Tribol. Lett. 28, 263–274 (2007). doi:10.1007/s11249-007-9270-5

  19. 19.

    Haltner, A.J., Oliver, C.S.: Effect of water vapor on friction of molybdenum disulfide. Ind Eng Chem Fundam 5, 348–355 (1966)

  20. 20.

    Lavik, M., Haltner, A.J., Spalvins, T.: Discussion of deposition of mos2 films by physical sputtering and their lubrication properties in vacuum. Asle Trans. 12, 41 (1969)

  21. 21.

    Voevodin, A.A., Fitz, T.A., Hu, J.J., Zabinski, J.S.: Nanocomposite tribological coatings with “Chameleon” surface adaptation. J. Vac. Sci. Technol. A 20, 1434–1444 (2002)

  22. 22.

    Voevodin, A.A., Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65, 741–748 (2005)

  23. 23.

    Voevodin, A.A., Zabinski, J.S., Muratore, C.: Recent advances in hard, tough, and low friction nanocomposite coatings. Tsinghua Sci. Technol. 10, 665–679 (2005). doi:10.1016/S1007-0214(05)70135-8

  24. 24.

    Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., Mcdevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited mos2 films. Tribol. Trans. 38, 894–904 (1995). doi:10.1080/10402009508983486

  25. 25.

    Schmitz, T., Action, J., Ziegert, J., Sawyer, W.: The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. Tribol. Trans. 127, 673–678 (2005). doi:10.1115/1.1843853

  26. 26.

    Schmitz, T., Action, J., Burris, D., Ziegert, J., Sawyer, W.: Wear-rate uncertainty analysis. J Tribol-Trans Asme 126, 802–808 (2004). doi:10.1115/1.1792675

  27. 27.

    Williams, J.: Engineering tribology, p. 488. Oxford University Press, Oxford, New York (1994)

  28. 28.

    Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of pb-mo-s solid lubricating coatings. Wear 230, 175–183 (1999). doi:10.1016/S0043-1648(99)00100-3

  29. 29.

    Zabinski, J.S., Bultman, J.E., Sanders, J.H., Hu, J.J.: Multi-environmental lubrication performance and lubrication mechanism of mos2/sb2o3/c composite films. Tribol. Lett. 23, 155–163 (2006). doi:10.1007/s11249-006-9057-0

Download references


This material is supported by an AFOSR-MURI grant FA9550-04-1-0367. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Air Force Office of Scientific Research. The authors would also like to thank Profs. Tony Schmitz and John Ziegert for their help in designing the reciprocating tribometer used in this study.

Author information

Correspondence to W. Gregory Sawyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamilton, M.A., Alvarez, L.A., Mauntler, N.A. et al. A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings. Tribol Lett 32, 91–98 (2008).

Download citation


  • Solid lubrication
  • Molybdenum disulfide
  • Wear
  • Cryotribology