Tribology Letters

, 34:1 | Cite as

Effects of Tail Group and Chain Length on the Tribological Behaviors of Self-Assembled Dual-Layer Films in Atmosphere and in Vacuum

  • Bingjun Yu
  • Linmao Qian
  • Jiaxin Yu
  • Zhongrong Zhou
Original Paper


In the present study, three kinds of self-assembled dual-layer films with various tail groups and chain length were prepared by adsorption of different carboxylic acids (stearic acid, STA; propionic acid, PPA; and phenylacetic acid, PAA) to the top of 3-aminopropyltriethoxysilane (APS) film on silicon surface. Using an atomic force microscopy, the films were found to reveal smaller adhesion and friction forces in vacuum than in atmosphere. Due to the effect of the adsorbed water layer on the samples, the more hydrophilic film exhibited the larger difference between the friction forces in vacuum and in atmosphere. For the dual-layer films either in atmosphere or in vacuum, the densely packed long chains can lead to lower friction than the poor-packed short chains, and the tail phenyl groups may induce higher friction than the methyl groups. In the initial stage of nanowear process by a diamond tip, a series of hillocks were observed on silicon surface along the scratching line. It was found that all the films can effectively enhance the antiwear ability of silicon surface and the self-assembled dual-layer film terminated by long chains (STA/APS) or –C6H5 groups (PAA/APS) performed much better than that terminated by short chains. Finally, the microwear abilities of the films were examined on a universal micro-tribometer. With the increase in normal load from 50 to 200 mN, the wear life varied for different films and good antiwear performances were also assigned to STA/APS and PAA/APS. This work can be indicative in the application of self-assembled films in the micro/nanoelectromechanical systems.


Atomic force microscopy Self-assembled Vacuum Friction Nanowear Microwear 



The authors are grateful for the financial support from the Natural Science Foundation of China (50625515, 50521503), Specialized Research Fund for the Doctoral Program of Higher Education (20050613023).


  1. 1.
    Chandross, M., Webb III, E.B., Stevens, M.J., Grest, G.S.: Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys. Rev. Lett. 93(16), 166103-1–166103-4 (2004). doi: 10.1103/PhysRevLett.93.166103 CrossRefADSGoogle Scholar
  2. 2.
    Maboudian, R.: Surface processes in MEMS technology. Surf. Sci. Rep. 30, 207–269 (1998). doi: 10.1016/S0167-5729(97)00014-9 CrossRefADSGoogle Scholar
  3. 3.
    Patton, S.T., Eapen, K.C., Zabinski, J.S.: Effects of adsorbed water and sample aging in air on the μN level adhesion force between Si(100) and silicon nitride. Tribol. Int. 34, 481–491 (2001). doi: 10.1016/S0301-679X(01)00047-0 CrossRefGoogle Scholar
  4. 4.
    Bhushan, B., Liu, H.: Micro/nanoscale tribological and mechanical characterization for MEMS/NEMS. Proc. SPIE 5392, 1–13 (2004). doi: 10.1117/12.540419 CrossRefADSGoogle Scholar
  5. 5.
    Volklein, F., Meier, A.: Microstructured vacuum gauges and their future perspectives. Vacuum 82, 420–430 (2008). doi: 10.1016/j.vacuum.2007.08.001 CrossRefGoogle Scholar
  6. 6.
    Wapelhorst, E., Hauschild, J.P., Muller, J.: Complex MEMS: a fully integrated TOF micro mass spectrometer. Sens. Actuators A 138, 22–27 (2007). doi: 10.1016/j.sna.2007.04.041 CrossRefGoogle Scholar
  7. 7.
    Hauschild, J.P., Wapelhorst, E., Muller, J.: Mass spectra measured by a fully integrated MEMS mass spectrometer. Int. J. Mass Spectrom. 264, 53–60 (2007). doi: 10.1016/j.ijms.2007.03.014 CrossRefADSGoogle Scholar
  8. 8.
    Randjelovi, D., Petropoulos, A., Kaltsas, G., et al.: Multipurpose MEMS thermal sensor based on thermopiles. Sens. Actuators A 141, 404–413 (2008). doi: 10.1016/j.sna.2007.10.043 CrossRefGoogle Scholar
  9. 9.
    Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)CrossRefADSGoogle Scholar
  10. 10.
    Ulman, A.: An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-assembly. Academic Press, San Diego (1991)Google Scholar
  11. 11.
    Houston, J.E., Doelling, C.M., Vanderlick, T.K., Hu, Y., Scoles, G., Wenzl, I., et al.: Comparative study of the adhesion, friction, and mechanical properties of CF3- and CH3-terminated alkanethiol monolayers. Langmuir 21, 3926–3932 (2005). doi: 10.1021/la046901t PubMedCrossRefGoogle Scholar
  12. 12.
    Maboudian, R., Ashurst, W.R., Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuators 82, 219–223 (2000). doi: 10.1016/S0924-4247(99)00337-4 CrossRefGoogle Scholar
  13. 13.
    Ren, S.L., Yang, S.R., Zhao, Y.P.: Micro- and macro-tribological study on a self-Assembled dual-layer film. Langmuir 19, 2763–2767 (2003). doi: 10.1021/la026662e CrossRefGoogle Scholar
  14. 14.
    Ma, J.Q., Liu, J.X., Mo, Y.F., Bai, M.W.: Effect of multiply-alkylated cyclopentane (MAC) on durability and load-carrying capacity of self-assembled monolayers on silicon wafer. Colloids Surf. A 301, 481–489 (2007). doi: 10.1016/j.colsurfa.2007.01.027 CrossRefGoogle Scholar
  15. 15.
    Mo, Y.F., Zhu, M., Bai, M.W.: Preparation and nano/microtribological properties of perfluorododecanoic acid (PFDA)-3-aminopropyltriethoxysilane (APS) self-assembled dual-layer film deposited on silicon. Colloids Surf. A 322, 170–176 (2008). doi: 10.1016/j.colsurfa.2008.03.004 CrossRefGoogle Scholar
  16. 16.
    Torii, A., Sasaki, M., Hane, K., Okuma, S.: A method for determining the spring constant of cantilevers for atomic force microscopy. Meas. Sci. Technol. 7, 179–184 (1996). doi: 10.1088/0957-0233/7/2/010 CrossRefADSGoogle Scholar
  17. 17.
    Qian, L.M., Xiao, X.D.: Tip in situ chemical modification and its effects on tribological measurements. Langmuir 16, 662–670 (2000). doi: 10.1021/la9905618 CrossRefGoogle Scholar
  18. 18.
    Qian, L.M., Tian, F., Xiao, X.D.: Tribological properties of self-assembled monolayers and their substrates under various humid environments. Tribol. Lett. 15(3), 169–176 (2003). doi: 10.1023/A:1024868532575 CrossRefGoogle Scholar
  19. 19.
    Yu, J.X., Qian, L.M.: An improved calibration method for friction force in atomic force microscopy. Tribology 27(5), 472–476 (2007)Google Scholar
  20. 20.
    Flater, E.E., Ashurst, W.R., Carpick, R.W.: Nanotribology of octadecyltrichlorosilane monolayers and silicon: self-mated versus unmated interfaces and local packing density effects. Langmuir 23, 9242–9252 (2007). doi: 10.1021/la063644e PubMedCrossRefGoogle Scholar
  21. 21.
    Kaneko, R., Umemura, S., Hirana, M., Andoh, Y., Miyamoto, T., Fukui, S.: Recent progress in microtribology. Wear 200, 296–304 (1996). doi: 10.1016/S0043-1648(96)07292-4 CrossRefGoogle Scholar
  22. 22.
    Xiao, X.D., Hu, J., Charych, D.H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 12, 235–237 (1996). doi: 10.1021/la950771u CrossRefGoogle Scholar
  23. 23.
    Bierbaum, K., Kinzler, M., Woll, C., Grunze, M.: A near edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy study of the film properties of self-assembled monolayers of organosilanes on oxidized Si(100). Langmuir 11, 512–518 (1995). doi: 10.1021/la00002a025 CrossRefGoogle Scholar
  24. 24.
    Ren, S.L., Yang, S.R., Zhao, Y.P., Yu, T.X., Xiao, X.D.: Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films. Surf. Sci. 546, 64–74 (2003). doi: 10.1016/j.susc.2003.09.018 CrossRefADSGoogle Scholar
  25. 25.
    Chance, J.J., Purdy, W.C.: Fabrication of carboxylic acid-terminated thin films using poly(ethyleneimine) on a gold surface. Langmuir 13, 4487–4489 (1997). doi: 10.1021/la970081l CrossRefGoogle Scholar
  26. 26.
    Iucci, G., Dettin, M., Battocchio, C., Gambaretto, R., Di Bello, C., Polzonetti, G.: Novel immobilizations of an adhesion peptide on the TiO2 surface: an XPS investigation. Mater. Sci. Eng. C 27, 1201–1206 (2007). doi: 10.1016/j.msec.2006.09.038 CrossRefGoogle Scholar
  27. 27.
    Angst, D.L., Simons, G.W.: Moisture absorption characteristics of organosiloxane self-assembled monolayers. Langmuir 7, 2236–2242 (1991). doi: 10.1021/la00058a043 CrossRefGoogle Scholar
  28. 28.
    Bhushan, B.: Nano- to microscale wear and mechanical characterization using scanning probe microscopy. Wear 251, 1105–1123 (2001). doi: 10.1016/S0043-1648(01)00804-3 CrossRefGoogle Scholar
  29. 29.
    Bhushan, B.: Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng. 84, 387–412 (2007). doi: 10.1016/j.mee.2006.10.059 CrossRefGoogle Scholar
  30. 30.
    Lio, A., Charych, D.H., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101, 3800–3805 (1997). doi: 10.1021/jp963918e CrossRefGoogle Scholar
  31. 31.
    Lee, S., Puck, A., Graupe, M., et al.: Structure, wettability, and frictional properties of phenyl-terminated self-assembled monolayers on gold. Langmuir 17, 7364–7370 (2001). doi: 10.1021/la0111497 CrossRefGoogle Scholar
  32. 32.
    Liang, Q., Tsui, O.K.C., Xu, Y., Li, H.N., Xiao, X.D.: Effect of C60 molecular rotation on nanotribology. Phys. Rev. Lett. 90(14), 146102-1–1461021-4 (2003). doi: 10.1103/PhysRevLett.90.146102 CrossRefADSGoogle Scholar
  33. 33.
    Zhang, L., Zarudi, I.: Towards a deeper understanding of plastic deformation in mono-crystalline silicon. Int. J. Mech. Sci. 43, 1985 (2001). doi: 10.1016/S0020-7403(01)00024-8 MATHCrossRefGoogle Scholar
  34. 34.
    Youn, S.W., Kang, C.G.: Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (100) surface. Wear 261, 328–337 (2006). doi: 10.1016/j.wear.2005.11.007 CrossRefGoogle Scholar
  35. 35.
    Miyake, S., Wang, M., Kim, J.: Nano mechanical processing of silicon by atomic force microscopy. Key Eng. Mater. 291–292, 401–406 (2005)CrossRefGoogle Scholar
  36. 36.
    Nakano, M., Ishida, T., Numata, T., Ando, Y., Sasak, S.: Tribological behavior of terphenyl self-asembled monolayer studied by a pin-on-plate method and friction force microscopy. J. Appl. Phys. 43(7B), 4619–4623 (2004). doi: 10.1143/JJAP.43.4619 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bingjun Yu
    • 1
  • Linmao Qian
    • 1
  • Jiaxin Yu
    • 1
  • Zhongrong Zhou
    • 1
  1. 1.Tribology Research Institute, National Traction Power LaboratorySouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations