Advertisement

Tribology Letters

, Volume 32, Issue 1, pp 31–34 | Cite as

Chemical Modification in Wear Tracks of Chemical Vapor-Deposited Diamond Surfaces Studied with X-ray Absorption Spectroscopy

  • L.-C. DudaEmail author
  • J. Andersson
  • T. Schmitt
  • S. Jacobson
Original Paper

Abstract

We present high-quality X-ray absorption near edge structure spectra of chemical vapor-deposited diamond at the C K-edge recorded with high spatial resolution. We compare unworn surfaces with surfaces worn in Ar-atmosphere, in air, and in water, respectively. Strikingly, the degree of chemical modification in the wear tracks is strongest for wear in an inert Ar-atmosphere which we attribute to the massive creation of unsaturated bonds in the surface vicinity due to high friction forces. We discuss the nature of chemical modification, in particular, whether and to what degree graphitization, amorphization, and ex situ reactions take place.

Keywords

Diamond Carbon Graphite Unlubricated friction NEXAFS Abrasive wear 

Notes

Acknowledgments

We gratefully acknowledge support from The Swedish Research Council (VR), The Swedish Foundation of Strategic Research (SSF) and The Göran Gustafsson Foundation (GGS). The MAXLAB staff is gratefully acknowledged for skillful technical assistance.

References

  1. 1.
    Gardos, M.N.: Surf. Coat. Technol. 113, 183 (1999). doi: 10.1016/S0257-8972(98)00842-1 CrossRefGoogle Scholar
  2. 2.
    Anders, S.: J. Tribol. 121, 961 (1999). doi: 10.1115/1.2834162 CrossRefGoogle Scholar
  3. 3.
    Anders, S., et al.: J. Vac. Sci. Technol. A 17(5), 2731 (1999). doi: 10.1116/1.581937 CrossRefGoogle Scholar
  4. 4.
    Chromik, R.R.: Wear 265, 477 (2008). doi: 10.1016/j.wear.2007.11.023 CrossRefGoogle Scholar
  5. 5.
    Denecke, R., et al.: J. Electron Spectrosc. Relat. Phenom. 971, 101–103 (1999). doi: 10.1016/S0368-2048(98)00358-2 Google Scholar
  6. 6.
    Morar, J.F., Himpsel, F.J., Hollinger, G., Hughes, G., Jordan, J.L.: Phys. Rev. Lett. 54, 1960 (1985). doi: 10.1103/PhysRevLett.54.1960 CrossRefGoogle Scholar
  7. 7.
    Stöhr, J.: NEXAFS Spectroscopy. Springer Verlag, New York (1992)Google Scholar
  8. 8.
    Gago, R., et al.: Surf. Sci. 482, 530 (2001). doi: 10.1016/S0039-6028(01)00939-6 CrossRefGoogle Scholar
  9. 9.
    Jiménez, I., et al.: Phys. Rev. B 52, 4261 (2000). doi: 10.1103/PhysRevB.62.4261 CrossRefGoogle Scholar
  10. 10.
    Lenardi, C., et al.: Diam. Relat. Mater. 8, 595 (1999). doi: 10.1016/S0925-9635(98)00284-2 CrossRefGoogle Scholar
  11. 11.
    Bruhwiler, P.A.: Phys. Rev. Lett. 74, 614 (1995). doi: 10.1103/PhysRevLett.74.614 CrossRefGoogle Scholar
  12. 12.
    Raty, J.-Y., et al.: Phys. Rev. Lett. 90, 037401 (2003). doi: 10.1103/PhysRevLett.90.037401 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L.-C. Duda
    • 1
    Email author
  • J. Andersson
    • 2
  • T. Schmitt
    • 3
  • S. Jacobson
    • 2
  1. 1.Department of Physics and Materials ScienceUppsala UniversityUppsalaSweden
  2. 2.Tribomaterials Group, Ångström LaboratoryUppsala UniversityUppsalaSweden
  3. 3.Swiss Light SourcePaul Scherrer InstitutVilligen PSISwitzerland

Personalised recommendations