Advertisement

Tribology Letters

, Volume 30, Issue 3, pp 199–204 | Cite as

Microscopic Frictional Response of Sodium Oleate Self-Assembled on Steel

  • Deepak Kumar
  • Sanjay Kumar BiswasEmail author
Original Paper

Abstract

The article peruses the frictional response of an important metal working lubricant additive, sodium oleate. Frictional force microscopy is used to track the response of molecules self-assembled on a steel substrate of 3–4 nm roughness at 0% relative humidity. The friction-normal load characteristic emerges as bell-shaped, where the peak friction and normal load at peak friction are both sensitive to substrate roughness. The frictional response at loads lower than that associated with the peak friction is path reversible while at higher loads the loading and unloading paths are different. We suggest that a new low-friction interface material is created when the normal loads are high.

Keywords

Tribology Emulsifier Steel AFM 

Notes

Acknowledgments

The authors are grateful to the Bharat Petroleum Corporation Ltd. (BPCL) for the financial grant, which has made this work possible. They also acknowledge the help of Ms. Geetha, Ms. Savitha, Ms. Bindu, and Mr. H. S. Shamasunder for carrying out this work. They acknowledge the useful discussion they had with Prof. Roland Bennewitz of McGill University in preparing the manuscript.

References

  1. 1.
    Burnham, N.A., Dominguez, D.D., Mowery, R.L., Colton, R.J.: Probing the surface forces of monolayer films with an atomic-force microscope. Phys. Rev. Lett. 64(16), 1931–1934 (1990)CrossRefGoogle Scholar
  2. 2.
    Overney, R.M., Takano, H., Fujihira, M., Paulus, W., Ringsdorf, H.: Antisotropy in friction molecular stick-slip motion. Phys. Rev. Lett. 72(22), 3546–3549 (1994)CrossRefGoogle Scholar
  3. 3.
    Liu, Y., Evans, D.F., Song, Q., Grainger, D.W.: Structure and frictional properties of self-assembeled surface monolayers. Langmuir 12, 1235–1244 (1996)CrossRefGoogle Scholar
  4. 4.
    Bouhacina, T., Aime, J.P., Gauthier, S., Michel, D.: Tribological behavior of a polymer grafted on silinized silica probed with a nanotip. Phy. Rev. B. 56(12), 7694–7703 (1997)CrossRefGoogle Scholar
  5. 5.
    Barena, E., Kopta, S., Ogletree, D.F., Charych D.H., Salmeron, M.: Relationship between friction and molecular structure: alkylsilane lubricant films under pressure. Phys. Rev. Lett. 82(14), 2880–2883 (1999)CrossRefGoogle Scholar
  6. 6.
    Schonherr, H., Julius, G.V.: Tribological properties of self-assembled monolayers of fluorocarbon and hydrocarbon thiols and dusulfides on Au (111) studied by scanning force microscopy. Mat. Sci. Eng. C. 8–9, 243–249 (1999)CrossRefGoogle Scholar
  7. 7.
    Fujita, M., Fujihira, M.: Effect of temperature on friction observed between a Si3N4 tip and dodecanethiol self-assembeled monolayer on Au (111). Ultramicroscopy 91, 227–230 (2002)CrossRefGoogle Scholar
  8. 8.
    Zang, Q., Archer, L.A.: Boundary lubrication and surface mobility of mixed alkylsilane self-assembled monolayers. J. Phys. Chem. B. 107, 13123–13132 (2003)CrossRefGoogle Scholar
  9. 9.
    Duwez, A.S., Jonas, U., Klein, H.: Influence of molecular arrangement in self-assembled monolayers on adhesion force measured by chemical force microscopy. Chemphyschem 4, 1107–1111 (2003)CrossRefGoogle Scholar
  10. 10.
    Quian, L., Tian, F., Xiao, X.: Tribological properties of self-assembled monolayers and their substrates under various humid environments. Tribo. Lett. 15(3), 169–176 (2003)CrossRefGoogle Scholar
  11. 11.
    Lee, D.H., Taebyoung O., Cho, K.: Combined effect of chain length and phase state on adhesion/friction behavior of self-assembled monolayers. J. Phys. Chem. B. 109, 11301–11306 (2005)CrossRefGoogle Scholar
  12. 12.
    Schirmeisen, A., Jansen, L., Holscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108–123111 (2006)CrossRefGoogle Scholar
  13. 13.
    Yoshizawa, H., Chen, Y.-L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1.Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)CrossRefGoogle Scholar
  14. 14.
    Yoshizawa, H., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 2.Stick-slip friction of spherical and chain molecules. J. Phys. Chem. 97, 11300–11313 (1993)CrossRefGoogle Scholar
  15. 15.
    Drummond, C., Israelachvili, J., Richetti, P.: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E. 67, 066110–066126 (2003)CrossRefGoogle Scholar
  16. 16.
    Ohzono, T., Fujihira, M.: Molecular dynamics simulations of friction between an ordered organic monolayer and rigid slider with an atomic-scale protuberance. Phys. Rev. B. 62(24), 17055–17071 (2000)CrossRefGoogle Scholar
  17. 17.
    Zhang, L., Leng, Y., Jiang, S.: Tip-based hybrid simulation study of frictional properties of self-assemble monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19, 9742–9747 (2003)CrossRefGoogle Scholar
  18. 18.
    Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)CrossRefGoogle Scholar
  19. 19.
    Glosli, J.N., Mcclelland, G.M.: Molecular dynamics study of sliding friction of ordered organic monolayers. Phys. Rev. Lett. 70, 1960–1963 (1993)CrossRefGoogle Scholar
  20. 20.
    Kuwamura, M., Fujita, K.: Antiwear properties of lubricant additives for high silicon aluminum alloy under boundary lubrication conditions. Wear 89, 99–105 (1983)CrossRefGoogle Scholar
  21. 21.
    Zhang, S.: Emerging biological materials through molecular self assembly. Biotechnol. Adv. 20, 321–339 (2002)CrossRefGoogle Scholar
  22. 22.
    Rozeenfel, I.L., Loskutov, A.I., Alekseev, V.N.: Adsorption of sodium oleate and water on an oxidized aluminum surface. Inst. Phys. Chem. Moskow 2, 233–237 (1982)Google Scholar
  23. 23.
    Loskutov, A I., Bratkov, A.A., Il’inskii A.A.: Interaction of sodium oleate with the surface of aluminum. Inst. Phys. Chem. Moskow 6, 1140–1145 (1985)Google Scholar
  24. 24.
    Devaprakasam, D., Khatri, O.P., Shankar, N., Biswas, S.K.: Boundary lubrication additives for aluminum: a journey from nano to macrotribology. Tribol. Int. 38, 1022–1034 (2005)CrossRefGoogle Scholar
  25. 25.
    Schey, J. A.: Tribology in metalworking: friction, wear and lubrication, American Society for Metals (1983)Google Scholar
  26. 26.
    Ivanova, I.Y., Machulschi, B.M., Zhelibo, E.P., Alkeseenko, A.I.: Effect of electrolysis time on the megnatic properties of fine iron powders. Porosh. Metallurigiya. 2(142), 6–11 (1983)Google Scholar
  27. 27.
    Carpick R.W., Salmeron M.: Scratching the surface: fundamental investigation of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163 (1997)CrossRefGoogle Scholar
  28. 28.
    Tutein, A.B., Stuart, S.J., Harrison J.A.: Role of defects in compression and friction of anchored hydrocarbon chain on diamond. Langmuir 16, 291–296 (2000)CrossRefGoogle Scholar
  29. 29.
    Salmeron M.: Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction. Tribol. Lett. 10, (1–2), 69–79 (2001)CrossRefGoogle Scholar
  30. 30.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, USA (1986)Google Scholar
  31. 31.
    Byrd H., Pike J.K., Talham D.R.: Inorganic monolayers formed at an organic template: a langmuir-blodget route to monolayer and multilayer films of zirconium octadecylphosphonate. Chem. Mater. 5, 709–715 (1993)CrossRefGoogle Scholar
  32. 32.
    Xiao, X., Hu, J., Charych, H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules self assembled on mica studied by atomic force microscopy. Langmuir 12, 235–237 (1996)CrossRefGoogle Scholar
  33. 33.
    Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Springer-Verlag Berlin Heidelberg, New York (1999)Google Scholar
  34. 34.
    Khatri, O.P., Devaprakasam, D., Biswas, S.K.: Frictional responses of Octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, 2H—Perflurooctyltrichlorosilane (FOTS) monolayers self-assembled on aluminium over six orders of contact length scale. Tribol. Lett. 20(3–4), 235–246 (2005)CrossRefGoogle Scholar
  35. 35.
    Khatri, O.P., Biswas, S.K.: Boundary lubrication capabilities of alkylsilane monolayer self-assembled on aluminium as investigated using FTIR spectroscopy and nanotribometry. Surf. Sci. 600, 4399–4404 (2006)CrossRefGoogle Scholar
  36. 36.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, UK (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of mechanical engineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations