Advertisement

Tribology Letters

, Volume 30, Issue 1, pp 53–60 | Cite as

Tribological Properties of TiN/Ag Nanocomposite Coatings

  • Harald KöstenbauerEmail author
  • Gerardo A. Fontalvo
  • Christian Mitterer
  • Jozef Keckes
Original Paper

Abstract

Morphology, structure, and tribological behavior of magnetron co-sputtered TiN/Ag nanocomposite coatings deposited at 150 °C with an Ag content in the range of 7–45 at.% were characterized. The coatings show a columnar structure with embedded Ag crystallites of 3–50 nm in diameter, where the columns are characterized by a layered structure with Ag-poor and Ag-rich layers. These layers originate from sample rotation during deposition, where the layer thickness increases with increasing Ag content. These Ag layers become continuous over a critical Ag content. At room temperature the friction coefficient is determined by the film structure, whereas friction and wear at high temperature depend on segregation of Ag to the surface.

Keywords

Nitrides Silver Self lubricating composites Wear-resistant coatings 

Notes

Acknowledgments

This work was financially supported by the Austrian NANO Initiative via a grant from the Austrian Science Fund FWF (project N401-NAN). The authors would like to thank Prof. C. Teichert, Dr. G. Hlawacek, and T. Klünsner for their support with AFM measurements.

References

  1. 1.
    Polcar, T., Kubart, T., Novak, R., Kopecky, L., Siroky, P.: Comparison of tribological behavior of TiN, TiCN and CrN at elevated temperatures. Surf. Coat. Technol. 193, 192–199 (2005)CrossRefGoogle Scholar
  2. 2.
    Derflinger, V., Brändle, H., Zimmermann, H.: New hard/lubricant coating for dry machining. Surf. Coat. Technol. 113, 286–292 (1999)CrossRefGoogle Scholar
  3. 3.
    Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol. 116–119, 36–45 (1999)CrossRefGoogle Scholar
  4. 4.
    Carrera, S., Salas, O., Moore, J.J., Woolverton, A., Sutter, E.: Performance of CrN/MoS2 (Ti) coatings for high wear low friction applications. Surf. Coat. Technol. 167, 25–32 (2003)CrossRefGoogle Scholar
  5. 5.
    Hirvonen, J.-P., Koskinen, J., Jervis, J.R., Nastasi, M.: Present progress in the development of low friction coatings. Surf. Coat. Technol. 80, 139–150 (1996)CrossRefGoogle Scholar
  6. 6.
    Ma, K.J., Chao, C.L., Liu, D.S., Chen, Y.T., Shieh, M.B.: Friction and wear behaviour of TiN/Au, TiN/MoS2 and TiN/TiCN/a-C:H coatings. J. Mater. Proc. Technol. 127, 182–186 (2002)CrossRefGoogle Scholar
  7. 7.
    Fateh, N., Fontalvo, G.A., Gassner, G., Mitterer, C.: Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear 262, 1152–1158 (2007)CrossRefGoogle Scholar
  8. 8.
    Gassner, G., Mayrhofer, P.H., Kutschej, K., Mitterer, C., Kathrein, M.: A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings. Tribol. Lett. 17, 751–756 (2004)CrossRefGoogle Scholar
  9. 9.
    Kutschej, K., Mayrhofer, P.H., Kathrein, M., Polcik, P., Mitterer, C.: A new low-friction concept for Ti1-xAlxN base coatings in high-temperature applications. Surf. Coat. Technol. 188–189, 358–363 (2004)CrossRefGoogle Scholar
  10. 10.
    Voevodin, A.A., Hu, J.J., Fitz, T.A., Zabinski, J.S.: Tribological properties of adaptive nanocomposite coatings made of yttria stabilized zirconia and gold. Surf. Coat. Technol. 146–147, 351–356 (2001)CrossRefGoogle Scholar
  11. 11.
    Muratore, C., Voevodin, A.A., Hu, J.J., Zabinski, J.S.: Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700°C. Wear 261, 797–805 (2006)CrossRefGoogle Scholar
  12. 12.
    Muratore, C., Hu, J.J., Voevodin, A.A.: Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications. Thin Solid Films 515, 3638–3643 (2007)CrossRefGoogle Scholar
  13. 13.
    Hu, J.J., Muratore, C., Voevodin, A.A.: Silver diffusion and high-temperature lubrication mechanisms of YSZ-Ag-Mo based nanocomposite coatings. Compos. Sci. Technol. 67, 336–347 (2007)CrossRefGoogle Scholar
  14. 14.
    Mulligan, C.P., Gall, D.: CrN-Ag self-lubricating hard coatings. Surf. Coat. Technol. 200, 1495–1500 (2005)CrossRefGoogle Scholar
  15. 15.
    Kutschej, K., Mitterer, C., Mulligan, C.P., Gall, D.: High-temperature tribological behavior of CrN-Ag self-lubricating coatings. Adv. Eng. Mater. 11, 1125–1129 (2006)CrossRefGoogle Scholar
  16. 16.
    Abourayak, K., Fayeulle, S., Vincent, L., Ribeiro, C., Cavaleiro, A., Vieira, M.T.: Tribological behaviour at elevated temperatures of thin physical vapour deposited coatings. Surf. Coat. Technol. 80, 171–175 (1996)CrossRefGoogle Scholar
  17. 17.
    Endrino, J.L., Nainaparampil, J.J., Krzanowski, J.E.: Magnetron sputter deposition of WC-Ag and TiC-Ag coatings and their frictional properties in vacuum environments. Scr. Mater. 47, 613–618 (2002)CrossRefGoogle Scholar
  18. 18.
    Jirout, M., Musil, J.: Effect of addition of Cu into ZrOx film on its properties. Surf. Coat. Technol. 200, 6792–6800 (2006)CrossRefGoogle Scholar
  19. 19.
    Musil, J., Jirout, M.: Toughness of hard nanostructured ceramic thin films. Surf. Coat. Technol. 201, 5148–5152 (2007)CrossRefGoogle Scholar
  20. 20.
    Zhang, S., Sun, D., Fu, Y., Du, H.: Toughening of hard nanostructural thin films: a critical review. Surf. Coat. Technol. 198, 2–8 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhang, S., Sun, D., Fu, Y., Pei, Y.T., De Hosson, J.Th.M.: Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surf. Coat. Technol. 200, 1530–1534 (2005)CrossRefGoogle Scholar
  22. 22.
    Voevodin, A.A., Zabinski, J.S.: Supertough wear-resistant coatings with “chameleon” surface adaptation. Thin Solid Films 370, 223–231 (2000)CrossRefGoogle Scholar
  23. 23.
    Köstenbauer, H., Fontalvo, G.A., Mitterer, C., Hlawacek, G., Teichert, C., Keckes, J.: Structure, stresses and stress relaxation of TiN/Ag nanocomposite films. J. Nanosci. Nanotechnol. (accepted)Google Scholar
  24. 24.
    Teichert, C.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365, 335–432 (2002)CrossRefGoogle Scholar
  25. 25.
    Warren, B.E.: X-ray Diffraction. Dover Publications, New York (1990)Google Scholar
  26. 26.
    Delhez, R., de Keijser, Th.H., Mittemeijer, E.J.: Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis – recipes, methods and comments. Fresenius Z Anal. Chem. 312, 1 (1982)CrossRefGoogle Scholar
  27. 27.
    Petrov, I., Barna, P.B., Hultman, L., Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, 117–128 (2003)CrossRefGoogle Scholar
  28. 28.
    Mayrhofer, P.H., Hörling, A., Karlsson, L., Sjölen, J., Larsson, T., Mitterer, C., Hultman, L.: Self-organized nanostructures in the Ti-Al-N system. Appl. Phys. Lett. 83, 2051–2094 (2003)CrossRefGoogle Scholar
  29. 29.
    Fontalvo, G.A., Humer, R., Mitterer, C., Sammt, K., Schemmel, I.: Microstructural aspects determining the adhesive wear of tool steels. Wear 260, 1028–1034 (2006)CrossRefGoogle Scholar
  30. 30.
    Berthier, Y., Godet, M., Brendle, M.: Velocity accommodation in friction. Tribol. Trans. 32, 490–496 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Harald Köstenbauer
    • 1
    • 2
    Email author
  • Gerardo A. Fontalvo
    • 1
  • Christian Mitterer
    • 1
  • Jozef Keckes
    • 2
  1. 1.Department of Physical Metallurgy and Materials TestingUniversity of LeobenLeobenAustria
  2. 2.Department of Materials PhysicsUniversity of LeobenLeobenAustria

Personalised recommendations