Advertisement

Tribology Letters

, Volume 29, Issue 2, pp 95–103 | Cite as

Adaptive Mo2N/MoS2/Ag Tribological Nanocomposite Coatings for Aerospace Applications

  • Samir M. AouadiEmail author
  • Yadab Paudel
  • Brandon Luster
  • Shane Stadler
  • Punit Kohli
  • Christopher Muratore
  • Carl Hager
  • Andrey A. Voevodin
Original Paper

Abstract

Reactively sputtered Mo2N/MoS2/Ag nanocomposite coatings were deposited from three individual Mo, MoS2, and Ag targets in a nitrogen environment onto Si (111), 440C grade stainless steel, and inconel 600 substrates. The power to the Mo target was kept constant, while power to the MoS2 and Ag targets was varied to obtain different coating compositions. The coatings consisted of Mo2N, with silver and/or sulfur additions of up to approximately 24 at%. Coating chemistry and crystal structure were evaluated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which showed the presence of tetragonal Mo2N and cubic Ag phases. The MoS2 phase was detected from XPS analysis and was likely present as an amorphous inclusion based on the absence of characteristic XRD peaks. The tribological properties of the coatings were investigated in dry sliding at room temperature against Si3N4, 440C stainless steel, and Al2O3. Tribological testing was also conducted at 350 and 600 °C against Si3N4. The coatings and respective wear tracks were examined using scanning electron microscopy (SEM), optical microscopy, profilometry, energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy. During room temperature tests, the coefficients of friction (CoF) were relatively high (0.5–1.0) for all coating compositions, and particularly high against Si3N4 counterfaces. During high-temperature tests, the CoF of single-phase Mo2N coatings remained high, but much lower CoFs were observed for composite coatings with both Ag and S additions. CoF values were maintained as low as 0.1 over 10,000 cycles for samples with Ag content in excess of 16 at% and with sulfur content in the 5–14 at% range. The chemistry and phase analysis of coating contact surfaces showed temperature-adaptive behavior with the formation of metallic silver at 350 °C and silver molybdate compounds at 600 °C tests. These adaptive Mo2N/MoS2/Ag coatings exhibited wear rates that were two orders of magnitude lower compared to Mo2N and Mo2N/Ag coatings, hence providing a high potential for lubrication and wear prevention of high-temperature sliding contacts.

Keywords

Self-lubricating friction Solid lubricants Raman Solid lubricated wear Coatings Friction-reducing 

Notes

Acknowledgments

This research was supported by the National Science Foundation (award # CMMI-0653986) and by an award from the Air Force Summer Faculty Fellowship Program. The authors also wish to thank Clay Watts of Southern Illinois University and Art Safriet of the Air Force Research Laboratory for their technical assistance.

References

  1. 1.
    Zhong, H.X., Zhang, H.M., Liu, G., Liang, Y.M., Hu, J.W., Yi, B.L.: A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride. Electrochem. Commun. 8, 707–712 (2006)CrossRefGoogle Scholar
  2. 2.
    Shi, C., Zhu, A.M., Yang, X.F., Au, C.T.: On the catalytic nature of VN, Mo2N, and W2N nitrides for NO reduction with hydrogen. Appl. Catal. A 276, 223–230 (2004)CrossRefGoogle Scholar
  3. 3.
    Inumaru, K., Baba, K., Yamanaka, S.: Preparation of superconducting molybdenum nitride MoN, (0.5 ≤ x ≤ 1) films with controlled composition. Physica B 383, 84–85 (2006)CrossRefGoogle Scholar
  4. 4.
    Inumaru, K., Baba, K., Yamanaka, S.: Superconducting molybdenum nitride epitaxial thin films deposited on MgO and α-Al2O3 substrates by molecular beam epitaxy. Appl. Surf. Sci. 253, 2863–2869 (2006)CrossRefGoogle Scholar
  5. 5.
    Alen, P., Ritala, M., Arstila, K., Keinonen, J., Leskela, M.: Atomic layer deposition of molybdenum nitride thin films for Cu metallizations. J. Electrochem. Soc. 152, G361–G366 (2005)CrossRefGoogle Scholar
  6. 6.
    Lu, J., Kuo, Y., Chatterjee, S., Tewg, J.Y.: Physical and electrical properties of Ta-N, Mo–N, and W-N electrodes on HfO2 high-k gate dielectric. J. Vac. Sci. Technol. B 24, 349–357 (2006)CrossRefGoogle Scholar
  7. 7.
    Tsui, B.Y., Huang, C.F., Lu, C.H.: Investigation of molybdenum nitride gate on SiO[2] and HfO[2] fro MOSFET application. J. Electrochem. Soc. 153, G197–G202 (2006)CrossRefGoogle Scholar
  8. 8.
    Sarioglu, C., Demirler, U., Kazmanli, M.K., Urgen, M.: Measurement of residual stresses by X-ray diffraction techniques in MoN and Mo2N coatings deposited by arc PVD on high-speed steel substrate. Surf. Coat. Technol. 190, 238–243 (2005)CrossRefGoogle Scholar
  9. 9.
    Li, X.Y., Tang, B., Pan, J.D., Liu, D.X., Xu, Z.: Tribological properties of Mo–N hard coatings on Ti6Al4V by double glow discharge technique. J. Mat. Sci. Technol. 19, 291–293 (2003)CrossRefGoogle Scholar
  10. 10.
    Woydt, M., Skopp, A., Dorfel, I., Witke, K.: Wear engineering oxides/anti-wear oxides. Wear 218, 84–95 (1998)CrossRefGoogle Scholar
  11. 11.
    Gassner, G., Mayrhofer, P.H., Kutschej, K., Mitterer, C., Kathrein, M.: Magnéli phase formation of PVD Mo–N and W–N coatings. Surf. Coat. Technol. 201, 3335–3341 (2006)CrossRefGoogle Scholar
  12. 12.
    Peterson, M.B., Murray, S.F., Florek, J.J.: Consideration of lubricants for temperatures to 1000°F. ASLE Trans. 2, 225–234 (1960)Google Scholar
  13. 13.
    Muratore, C., Voevodin, A.A., Hu, J.J., Zabinski, J.S.: Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C. Wear 261, 797–805 (2006)CrossRefGoogle Scholar
  14. 14.
    Hauert, R., Patscheider, J.: From alloying to nanocomposites—Improved performance of hard coatings. Adv. Eng. Mat. 2, 247–259 (2000)CrossRefGoogle Scholar
  15. 15.
    Petrov, I., Barna, P.B., Hultman, L., Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, S117–S128 (2003)CrossRefGoogle Scholar
  16. 16.
    Raveh, A., Zukerman, I., Shneck, R., Avni, R., Fried, I.: Thermal stability of nanostructured superhard coatings: a review. Surf. Coat. Technol. 201, 6136–6142 (2006)CrossRefGoogle Scholar
  17. 17.
    Suszko, T., Gulbinski, W., Jagielski, J.: Mo2N/Cu thin films—the structure, mechanical and tribological properties. Surf. Coat. Technol. 200, 6288–6292 (2006)CrossRefGoogle Scholar
  18. 18.
    Joseph, M.C., Tsotsos, C., Baker, M.A., Kench, P.J., Rebholz, C., Matthews, A., Leyland, A.: Characterisation and tribological evaluation of nitrogen-containing molybdenum–copper PVD metallic nanocomposite films. Surf. Coat. Technol. 190, 345–356 (2005)CrossRefGoogle Scholar
  19. 19.
    Gulbinski, W., Suszko, T.: Thin films of Mo2N/Ag nanocomposite—the structure, mechanical and tribological properties. Surf. Coat. Technol. 201, 1469–1474 (2006)CrossRefGoogle Scholar
  20. 20.
    Turutoglu, T., Urgen, M., Cakir, A.F., Ozturk, A.: Characterization of Mo2N/Ag nanocomposite coatings produced by magnetron sputtering. Key Eng. Mat. 264–268, 489–492 (2004)CrossRefGoogle Scholar
  21. 21.
    Heo, S.J., Kim, K.H., Kang, M.C., Suh, J.H., Park C.G.: Syntheses and mechanical properties of Mo–Si–N coatings by a hybrid coating system. Surf. Coat. Technol. 201, 4180–4184 (2006)CrossRefGoogle Scholar
  22. 22.
    Liu, Q., Fang, Q.F., Liang, F.J., Wang, J.X., Yang, J.F., Li, C.: Synthesis and properties of nanocomposite MoSiN hard films. Surf. Coat. Technol. 201, 1894–1898 (2006)CrossRefGoogle Scholar
  23. 23.
    Liu, Q., Liu, T., Fang, Q.F., Liang, F.J., Wang, J.X.: Preparation and characterization of nanocrystalline composites Mo–C–N hard films. Thin Solid Films 503, 79–84 (2006)CrossRefGoogle Scholar
  24. 24.
    Voevodin, A.A., Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Composites Sci. Technol. 65, 741–748 (2005)Google Scholar
  25. 25.
    Muratore, C., Voevodin, A.A.: Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings. Surf. Coat. Technol. 201, 4125–4130 (2006)CrossRefGoogle Scholar
  26. 26.
    Voevodin, A.A., Zabinski, J.S.: Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Films 370, 223–231 (2000)CrossRefGoogle Scholar
  27. 27.
    Erdemir, A.: A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surf. Coat. Technol. 200, 1792–1796 (2005)CrossRefGoogle Scholar
  28. 28.
    Bobzin, K., Lugscheider, E., Nickel, R., Bagcivan, N., Kramer, A.: Wear behavior of Cr1−xAlxN PVD-coatings in dry running conditions. Wear 263, 1274–1280 (2007)CrossRefGoogle Scholar
  29. 29.
    Mo, J.L., Zhu, M.H., Lei, B., Leng, Y.X., Huang, N.: Comparison of tribological behaviours of AlCrN and TiAlN coatings deposited by physical vapor deposition. Wear 263, 1423–1429 (2007)CrossRefGoogle Scholar
  30. 30.
    Muratore, C., Hu, J.J., Voevodin, A.A.: Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications. Thin Solid Films 515, 3638–3643 (2007)CrossRefGoogle Scholar
  31. 31.
    Badischa, E., Fontalvo, G.A., Stoiber, M., Mitterer, C.: Tribological behavior of PACVD TiN coatings in the temperature range up to 500 °C. Surf. Coat. Technol. 163164, 585–590 (2003)CrossRefGoogle Scholar
  32. 32.
    Aouadi, S.M., Debessai, M., Filip, P.: Zirconium nitride/silver nanocomposite structures for biomedical applications. J. Vac. Sci. Technol. B 22, 1134–1140 (2004)CrossRefGoogle Scholar
  33. 33.
    Mändl, S., Gerlach, J.W., Rauschenbach, B.: Nitride formation in transition metals during high-fluence high-temperature implantation. Surf. Coat. Technol. 200, 584–588 (2005)CrossRefGoogle Scholar
  34. 34.
    Muratore, C., Voevodin, A.A., Hu, J.J., Jones, J.g., Zabinski, J.S.: Growth and characterization of nanocomposite yttria-stabilized zirconia with Ag and Mo. Surf. Coat. Technol. 200, 1549–1554 (2005)CrossRefGoogle Scholar
  35. 35.
    Kim, G.-T., Park, T.-K., Chung, H., Kim, Y.-T., Kwon, M.-H., Choi, J.-G.: Growth and characterization of chloronitroaniline crystals for optical parametric oscillators I. XPS study of Mo-based compounds. Appl. Surf. Sci. 152, 35–43 (1999)CrossRefGoogle Scholar
  36. 36.
    Wei, Z.B.Z., Grange, P., Delmon, B.: XPS and XRD studies of fresh and sulfided Mo2N. Appl. Surf. Sci. 135, 107–114 (1998)CrossRefGoogle Scholar
  37. 37.
    Camacho-López, M.A., Escobar-Alarcón, L., Haro-Poniatowski, E.: Haro-Poniatowski, E.: Structural transformations in MoOx thin films grown by pulsed laser deposition. Appl. Phys. A 78, 59–65 (2004)CrossRefGoogle Scholar
  38. 38.
    Wu, J.-H., Rigney, D.A., Falk, M.L., Sanders, J.H., Voevodin, A.A., Zabinski, J.S.: Tribological behavior of WC/DLC/WS2 nanocomposite coatings. Surf Coat Technol 188189, 605–611 (2004)CrossRefGoogle Scholar
  39. 39.
    Voevodin, A.A., Fitz, T.A., Hu, J.J., Zabinski, J.S.: Nanocomposite tribological coatings with chameleon friction surface adaptation. J. Vac. Sci. Technol. A 20, 1434–1444 (2002)CrossRefGoogle Scholar
  40. 40.
    Erdemir, A., Erck, R.A., Fenske, G.R., Hong, H.: Solid/liquid lubrication of ceramics at elevated temperatures. Wear 203204, 588–595 (1997)CrossRefGoogle Scholar
  41. 41.
    Kutschej, K., Mitterer, C., Mulligan, C.P., Gall, D.: High-temperature tribological behavior of CrN-Ag self-lubricating coatings. Adv. Eng. Mat. 8, 1125–1129 (2006)CrossRefGoogle Scholar
  42. 42.
    Kumari, L., Ma, Y.-R., Tsai, C.-C., Lin, Y.-W., Wu, S.Y., Cheng, K.-W., Liou, Y.: X-ray diffractiom and Raman scatteringstudies on large-area array and nanobranched structure of 1D MoO2 nanorods. Nanotechnology 18, 115717 (2007)CrossRefGoogle Scholar
  43. 43.
    Wenda, E.: High temperature reactions in the MoO3-Ag2O system. J. Therm. Anal. 53, 861–870 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Samir M. Aouadi
    • 1
    Email author
  • Yadab Paudel
    • 1
  • Brandon Luster
    • 1
  • Shane Stadler
    • 1
  • Punit Kohli
    • 2
  • Christopher Muratore
    • 3
  • Carl Hager
    • 3
  • Andrey A. Voevodin
    • 3
  1. 1.Department of PhysicsSouthern Illinois UniversityCarbondaleUSA
  2. 2.Department of ChemistrySouthern Illinois UniversityCarbondaleUSA
  3. 3.Air Force Research LaboratoryMaterials and Manufacturing Directorate, Wright-Patterson Air Force BaseDaytonUSA

Personalised recommendations