Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stick-Slip Motions in the Friction Force Microscope: Effects of Tip Compliance

  • 164 Accesses

  • 13 Citations

Abstract

When a microcantilever with a nanoscale tip is scanned laterally over a surface to measure the nanoscale frictional forces, the onset of stick-slip tip motions is an extremely important phenomenon that signals the onset of lateral friction forces. In this article, we investigate theoretically the influence of tip and microcantilever compliance on this phenomenon. We show that static considerations alone cannot predict uniquely the onset of single or multiple atom slip events. Instead, the nonlinear dynamics of the tip during a slip event need to be carefully investigated to determine if the tip evolves to a single or multiple atom stick-slip motions. The results suggest that the relative compliances of the tip and microcantilever can be engineered to induce single or multiple atom stick-slip events and thus control lateral friction forces at the nanoscale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

  2. 2.

    Meyer, E., Overney, R.M., Dransfeld, K., Gyalog, T.: Nanoscience: Friction and Rheology on the Nanometer Scale. World Scientific, Singapore (1998)

  3. 3.

    Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)

  4. 4.

    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

  5. 5.

    Braiman, Y., Barhen, J., Protopopescu, V.: Control of friction at the nanoscale. Phys. Rev. Lett. 90, 094301 (2003)

  6. 6.

    Cochard, A., Bureau, L., Baumberger, T.: Stabilization of frictional sliding by normal load modulation. Trans. ASME 70, 220–226 (2003)

  7. 7.

    Rozman, M.G., Urbakh, M., Klafter, J.: Controlling chaotic frictional forces. Phys. Rev. E 57, 7340–7343 (1998)

  8. 8.

    Conley, W.G., Raman, A., Krousgrill, C.M.: Nonlinear dynamics in Tomlinson’s model for atomic scale friction and friction force microscopy. J. Appl. Phys. 98, 053519 (2005)

  9. 9.

    Persson, B.N.J.: Sliding Friction Physical Principles and Applications. Springer, New York (2000)

  10. 10.

    Porto, M., Zaloj, V., Urbakh, M., Klafter, J.: Macroscale vs. microscale description of friction: from Tomlinson to shearons. Tribol. Lett. 9, 45–54 (2000)

  11. 11.

    Tomlinson, G.A.: A molecular theory of friction. Phil. Mag. 7, 905–939 (1929)

  12. 12.

    Ishikawa, M., Yoshimura, M., Ueda, K.: Carbon nanotube as a probe for friction force microscopy. Physica B 323, 184–186 (2002)

  13. 13.

    Luan, B., Robbins, M.O.: Effect of inertia and elasticity on stick-slip motion. Phys. Rev. Lett. 93, 036105-1 (2004)

  14. 14.

    Johnson, K.L. Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5, 155–160 (1998)

  15. 15.

    Hölscher, H., Schwarz, U.: Modelling of the scan process in lateral force microscopy. Surf. Sci. 375, 395–402 (1997)

  16. 16.

    Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997)

  17. 17.

    Lantz, M.A., O’Shea, S.J., Hoole, A.C.F., Welland, M.E.: Lateral stiffness of the tip and tip-sample contact in frictional force microscopy. Appl. Phys. Lett. 70, 970–972 (1997)

  18. 18.

    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York (1990)

  19. 19.

    Sharos, L.B., Raman, A., Crittenden, S., Reifenberger, R.: Enhanced mass sensing using torsional and lateral resonance in microcantilevers. Appl. Phys. Lett. 84, 4638–4640 (2004)

Download references

Acknowledgments

The primary author (WGC) would like to acknowledge the support of the Department of Energy via a Computational Science Graduate Fellowship (CSGF) administered by the Krell Institute. The corresponding author (AR) would like to acknowledge the support of the National Science Foundation through Grant 0409660-CMS.

Author information

Correspondence to Arvind Raman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conley, W.G., Krousgrill, C.M. & Raman, A. Stick-Slip Motions in the Friction Force Microscope: Effects of Tip Compliance. Tribol Lett 29, 23–32 (2008). https://doi.org/10.1007/s11249-007-9278-x

Download citation

Keywords

  • AFM
  • Dynamic modeling
  • Stick-slip
  • Nanotribology
  • Friction mechanisms