Tribology Letters

, Volume 28, Issue 3, pp 307–318 | Cite as

Influence of Cu Grain Size on Running-in Related Phenomena

  • D. Shakhvorostov
  • L. Jian
  • E. Nold
  • G. Beuchle
  • M. Scherge
Original Paper


We used a single-asperity microscopic tribosystem diamond sphere/Cu sheet to investigate the relevant phenomena affecting the dynamics of friction and wear in a macroscopic system. The influence of the average grain size of the softer of two tribopartners on friction and wear was investigated in particular. The observed tribosystem experienced a natural transition during the running time, from severe plastic flow to predominating boundary lubrication. This fact was used to study the influence of poly-α-olefine base oil and fully formulated engine oil Fuchs Titan SAE 5W45 on friction and wear during severe deformation and the boundary lubrication regime. It is shown that the initial grain size has a crucial influence on wear and friction only during first sliding interactions. During the initial sliding, the grain size rapidly decreases due to plastic deformation. The grains then become uniformly equal in size in every initial situation after approximately 30 cycles. Initially larger grains result in increased friction and wear as well as higher sensitivity to the kind of lubrication.


Friction mechanisms Wear mechanisms 



The authors are grateful to T. Ditz from the Institut für Materialforschung IMF II, Forschungszentrum Karlsruhe GmbH, for the measurement of hardness and Young’s modulus profiles of Cu samples. We also thank L. Echtle for help in preparing the Cu samples, and acknowledge M. H. Müser for very helpful discussion.


  1. 1.
    Kragelsky, I., Dobychin, M., Kombalov, V.: Friction and Wear, Calculation Methods. Pergamon Press, Oxford (1982)Google Scholar
  2. 2.
    Bowden, F., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)Google Scholar
  3. 3.
    Blau, P.J.: Friction and Wear Transitions of Materials. Noyes Publications, Park Ridge (1989)Google Scholar
  4. 4.
    Kehrwald, B.: Untersuchung der Vorgänge in tribologischen Systemen während des Einlaufs. PhD thesis, University Karlsruhe (1998)Google Scholar
  5. 5.
    Blau, P.: Friction Science and Technology. Marcel Dekker, Amsterdam (1996)Google Scholar
  6. 6.
    Rigney, D.A., Hirth, J.P.: Plastic deformation and sliding friction of metals. Wear 53, 345–370 (1979)CrossRefGoogle Scholar
  7. 7.
    Kuhlmann-Wilsdorf, D., Ives, L.K.: Subsurface hardening in erosion-damaged copper as inferred from the dislocation cell structure, and its dependence on particle velocity and angle of impact. Wear 85, 361–373 (1983)CrossRefGoogle Scholar
  8. 8.
    Young, J.L. Jr., Kuhlmann-Wilsdorf, D., Hull, R.: The generation of mechanically mixed layers (MMLs) during sliding contact and the effects of lubricant thereon. Wear 246, 74–90 (2000)CrossRefGoogle Scholar
  9. 9.
    Bednar, M.S., Kuhlmann-Wilsdorf, D.: Amorphous and alloy film formation in sliding of silver on copper. Wear 181183, 922–937 (1995)Google Scholar
  10. 10.
    Blau, P.: Investigation of the nature of micro-indentation hardness gradients below sliding contacts in five copper alloys worn against 52100 steel. J. Mater. Sci. 19, 1957–1968 (1984)CrossRefGoogle Scholar
  11. 11.
    Rice, S.L., Nowotny, H., Wayne, S.F.: Characteristics of metallic subsurface zones in sliding and impact wear. Wear 74, 131–142 (1981)CrossRefGoogle Scholar
  12. 12.
    Rigney, D.A., Divakar, R., Kuo, S.M.: Deformation substructures associated with very large plastic strains. Scripta Metall. Mater. 27, 975–980 (1992)CrossRefGoogle Scholar
  13. 13.
    Shakhvorostov, D., Gleising, B., Büscherb, R., Dudzinski, W., Fischer, A., Scherge, M.: Microstructure of tribologically induced nanolayers produced at ultra-low wear rates. Wear 263, 1259–1265 (2007)CrossRefGoogle Scholar
  14. 14.
    Schiøtz, J., Di Tolla, F., Jacobsen, K.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998)CrossRefGoogle Scholar
  15. 15.
    Arzt, E.: Size effects in materials due to microstructural and dimensional constrains: a comparative review. Acta Mater 46, 5611–5626 (1998)CrossRefGoogle Scholar
  16. 16.
    Shakhvorostov, D., Pöhlmann, K., Scherge, M.: Structure and mechanical properties of tribologically induced nanolayers. Wear 260, 433–437 (2006)CrossRefGoogle Scholar
  17. 17.
    Ohmae, N., Tsukizoe, T., Akiyama, F.: On the microscopic processes involved in metallic friction. Philos. Mag. A 40, 803–810 (1979)CrossRefGoogle Scholar
  18. 18.
    El-Raghy, T., Blau, P., Barsoum, M.: Effect of grain size on friction and wear behavior of Ti3SiC2. Wear 238, 125–130 (2000)CrossRefGoogle Scholar
  19. 19.
    Bregliozzi, G., Di Schino, A., Kenny, H., J.M. Haefke: Influence of atmospheric humidity and grain size on the friction and wear of high nitrogen austenitic stainless steel. J. Mater. Sci. 39, 1481–1484 (2004)CrossRefGoogle Scholar
  20. 20.
    Scherge, M., Gorb, S.N.: Biological Micro- and Nanotribology. Nature’s Solutions. Springer, Berlin (2001)Google Scholar
  21. 21.
    Kayaba, T., Hokkirigawa, K., Kato, K.: Analysis of the abrasive wear mechanism by successive observations of wear processes in a scanning electron microscope. Wear 110, 419–430 (1986)CrossRefGoogle Scholar
  22. 22.
    Zum Gahr, K.: Microstructure and wear of materials. Elsevier, Amsterdam (1987)Google Scholar
  23. 23.
    Czanderna, A.: Methods of surface analysis, Vol. 1. Elsevier, Amsterdam (1975)Google Scholar
  24. 24.
    Watson, D.: Improved dynamic range and automated lineshape differentiation in AES/XPS composition versus depth profiles. Surf. Interface Anal. 15, 516–524 (1990)CrossRefGoogle Scholar
  25. 25.
    De Barros, M.I., Bouchet, J., Raoult, I., Le Mogne, T., Martin, J.M., Kasrai, M., Yamada, Y.: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254, 863–870 (2003)CrossRefGoogle Scholar
  26. 26.
    Mosey, N.J., Müser, M.H., Woo, T.K.: Molecular mechanisms for the functionality of lubricant additives. Science 307, 1612–1615 (2005)CrossRefGoogle Scholar
  27. 27.
    Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245, 1–9 (2000)CrossRefGoogle Scholar
  28. 28.
    Heinicke, G.: Tribochemistry. Hanser Verlag, München (1984)Google Scholar
  29. 29.
    Hall, E.O.: The deformation of mild steel. III. Discussion of results. Proc. Phys. Soc. B 64, 747–753 (1951)CrossRefGoogle Scholar
  30. 30.
    Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. Shakhvorostov
    • 1
    • 2
  • L. Jian
    • 3
  • E. Nold
    • 4
  • G. Beuchle
    • 5
  • M. Scherge
    • 1
  1. 1.IAVF Antriebstechnik AGKarlsruheGermany
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada
  3. 3.Wuhan Research Institute of Materials Protection CAMSTWuhanChina
  4. 4.Institut für Materialforschung IMF IForschungszentrum Karlsruhe GmbHEggenstein-LeopoldshafenGermany
  5. 5.Institut für Technische Chemie ITC-TABForschungszentrum Karlsruhe GmbHEggenstein-LeopoldshafenGermany

Personalised recommendations