Tribology Letters

, Volume 27, Issue 2, pp 233–238 | Cite as

Macroscopic Friction Coefficient Measurements on Living Endothelial Cells

  • Alison C. Dunn
  • Toral D. Zaveri
  • Benjamin G. Keselowsky
  • W. Gregory SawyerEmail author
Original Paper


Arterial stent deployment by balloon or self-expandable structure introduces shear forces and radial forces that can damage or remove the endothelial cell layer. These factors can subsequently cause failure by restenosis or endothelial leaks. These conditions can be exacerbated by pulsatile blood flow and arterial asymmetry, which can cause migration or displacement. In mechanical or finite-element models which attempt to explain this motion, friction between the stent materials and endothelial cells is eclipsed by pressure, or assumptions that cells are moved along with the stent. During device deployment or migration, some relative motion between stent materials and endothelial cells occurs. This study aims to quantify friction between a polished glass pin and a single layer of arterial endothelial cells, and include observations of cell damage in an attempt to better understand the biological response to tribological stresses. Measured friction coefficient values were on the order of μ = 0.03–0.06.


Biotribology Stent Cells 



The authors would like to acknowledge very helpful conversations regarding testing procedures and cell culturing with Prof. Roger Tran-Son-Tay, Prof. Malisa Sarntinoranont, and Jessica Cobb at the University of Florida.


  1. 1.
    Ho, S.P., Nakabayashi, N., Iwasaki, Y., Boland, T., Laberge, M.: Frictional properties of Poly(Mpc-Co-Bma) phospholipid polymer for catheter applications. Biomaterials 24(28), 5121–5129 (2003)CrossRefGoogle Scholar
  2. 2.
    Lim, I.: Biocompatibility of stent materials. MIT Undergrad. Res. J. 11(Fall 2004), 33–37 (2004)Google Scholar
  3. 3.
    Costa, K.D., Sim, A.J., Yin, F.C.P.: Non-hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J. Biomech. Eng. Trans. Asme 128(2), 176–184 (2006)CrossRefGoogle Scholar
  4. 4.
    Volodos, S.M., Sayers, R.D., Gostelow, J.P., Bell, P.R.F.: An investigation into the cause of distal endoleaks: role of displacement force on the distal end of a stent-graft. J. Endovas. Ther 12(1), 115–120 (2005)CrossRefGoogle Scholar
  5. 5.
    Liffman, K., Sutalo, I.D., Lawrence-Brown, M.M.D., Semmens, J.B., Aldham, B.: Movement and dislocation of modular stent-grafts due to pulsatile flow and the pressure difference between the stent-graft and the aneurysm sac. J. Endovas. Ther 13(1), 51–61 (2006)CrossRefGoogle Scholar
  6. 6.
    Resch, T., Malina, M., Lindblad, B., Malina, J., Brunkwall, J., Ivancev, K.: The impact of stent design on proximal stentgGraft fixation in the abdominal aorta: an experimental study. Eur. J. Vasc. Endovasc. Surg. 20(2), 190–195 (2000)CrossRefGoogle Scholar
  7. 7.
    Jedwab, M.R., Clerc, C.O.: A study of the geometrical and mechanical-properties of a self-expanding metallic stent theory and experiment. J. Appl. Biomat. 4(1), 77–85 (1993)CrossRefGoogle Scholar
  8. 8.
    Morris, L., Delassus, P., Walsh, M., Mcgloughlin, T.: A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (Aaa). J. Biomech 37(7), 1087–1095 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, Z., Kleinstreuer, C.: Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model. J. Biomech 39(12), 2264–2273 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, Z., Kleinstreuer, C., Farber, M.: Computational analysis of biomechanical contributors to endovascular graft failure. Biomech. Model Mechanobiol. 4(4), 221–234 (2005)CrossRefGoogle Scholar
  11. 11.
    Walke, W., Paszenda, Z., Filipiak, J.: Experimental and numerical biomechanical analysis of vascular stent. J. Mater. Process. Technol. 164, 1263–1268 (2005)CrossRefGoogle Scholar
  12. 12.
    Wang, R., Ravi-Chandar, K.: Mechanical response of a metallic aortic stent - Part I: Pressure-diameter relationship. J. Appl. Mech. Trans. Asme 71(5), 697–705 (2004)CrossRefGoogle Scholar
  13. 13.
    Wang, R., Ravi-Chandar, K.: Mechanical response of a metallic aortic stent - Part Ii: A beam-on-elastic foundation model. J. Appl. Mech. Trans. Asme 71(5), 706–712 (2004)CrossRefGoogle Scholar
  14. 14.
    Laroche, D., Delorme, S., Anderson, T., Diraddo, R.: Computer prediction of friction in balloon angioplasty and stent implantation. Biomed. Simul., Proc. 4072, 1–8 (2006)CrossRefGoogle Scholar
  15. 15.
    Holzapfel, G., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. Trans. Asme 127(1), 166–180 (2005)CrossRefGoogle Scholar
  16. 16.
    Fisher, A.B., Chien, S., Barakat, A.I., Nerem, R.M.: Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 281(3), L529–L533 (2001)Google Scholar
  17. 17.
    Sato, H., Katano, M., Takigawa, T., Masuda, T.: Estimation for the elasticity of vascular endothelial cells on the basis of atomic force microscopy and Young’s modulus of gelatin gels. Polym. Bull. 47(3–4), 375–381 (2001)CrossRefGoogle Scholar
  18. 18.
    Sato, M., Nagayama, K., Kataoka, N., Sasaki, M., Hane, K.: Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33(1), 127–135 (2000)CrossRefGoogle Scholar
  19. 19.
    Yeh, H.I., Lu, S.K., Tian, T.Y., Hong, R.C., Lee, W.H., Tsai, C.H.: Comparison of endothelial cells grown on different stent materials. J. Biomed. Mater. Res. A 76A(4), 835–841 (2006)CrossRefGoogle Scholar
  20. 20.
    Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18(4), 499–504 (2005)CrossRefGoogle Scholar
  21. 21.
    Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25(28), 5947–5954 (2004)CrossRefGoogle Scholar
  22. 22.
    Keselowsky, B.G., Garcia, A.J.: Quantitative methods for analysis of integrin binding and focal adhesion formation on biomaterial surfaces. Biomaterials 26(4), 413–418 (2005)CrossRefGoogle Scholar
  23. 23.
    Keselowsky, B.G., Wang, L., Schwartz, Z., Garcia, A.J., Boyan, B.D.: Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J. Biomed. Mater. Res. A 80A(3), 700–710 (2007)CrossRefGoogle Scholar
  24. 24.
    Butcher, J.T., Tressel, S., Johnson, T., Turner, D., Sorescu, G., Jo, H., Nerem, R.M.: Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences - influence of shear stress. Arterioscler. Thromb. Vasc. Biol. 26(1), 69–77 (2006)CrossRefGoogle Scholar
  25. 25.
    Galbraith, C.G., Skalak, R., Chien, S.: Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40(4), 317–330 (1998)CrossRefGoogle Scholar
  26. 26.
    Mohan, I.V., Harris, P.L., Van Marrewijk, C.J., Laheij, R.J., How, T.V.: Factors and forces influencing stent-graft migration after endovascular aortic aneurysm repair. J. Endovasc. Ther. 9, 748–755 (2002)CrossRefGoogle Scholar
  27. 27.
    Ratner B.D., Bryant S.J.: Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004)CrossRefGoogle Scholar
  28. 28.
    Brash J.L.: Protein adsorption at the solid-solution interface in relation to blood-material interactions. In: Horbett T.A., Brash J.L. (eds) Proteins at Interfaces, pp. 490–506. American Chemical Society, Washington, DC (1987)Google Scholar
  29. 29.
    Andrade, J.D., Hlady, V.V.: Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv. Polym. Sci. 79, 1–63 (1986)Google Scholar
  30. 30.
    Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. U.S.A 102(17), 5953–5957 (2005)CrossRefGoogle Scholar
  31. 31.
    Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A 66A(2), 247–259 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alison C. Dunn
    • 1
  • Toral D. Zaveri
    • 2
  • Benjamin G. Keselowsky
    • 2
  • W. Gregory Sawyer
    • 1
    Email author
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations