Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

Small amplitude reciprocating wear performance of diamond-like carbon films: dependence of film composition and counterface material

Abstract

Small amplitude (50 μm) reciprocating wear of hydrogen-containing diamond-like carbon (DLC) films of different compositions has been examined against silicon nitride and polymethyl-methacrylate (PMMA) counter-surfaces, and compared with the performance of an uncoated steel substrate. Three films were studied: a DLC film of conventional composition, a fluorine-containing DLC film (F-DLC), and silicon-containing DLC film. The films were deposited on steel substrates from plasmas of organic precursor gases using the Plasma Immersion Ion Implantation and Deposition (PIIID) process, which allows for the non-line-of-sight deposition of films with tailored compositions. The amplitude of the resistive frictional force during the reciprocating wear experiments was monitored in situ, and the magnitude of film damage due to wear was evaluated using optical microscopy, optical profilometry, and atomic force microscopy. Wear debris was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In terms of friction, the DLC and silicon-containing DLC films performed exceptionally well, showing friction coefficients less than 0.1 for both PMMA and silicon nitride counter-surfaces. DLC and silicon-containing DLC films also showed significant reductions in transfer of PMMA compared with the uncoated steel. The softer F-DLC film performed similarly well against PMMA, but against silicon nitride, friction displayed nearly periodic variations indicative of cyclic adhesion and release of worn film material during the wear process. The results demonstrate that the PIIID films achieve the well-known advantageous performance of other DLC films, and furthermore that the film performance can be significantly affected by the addition of dopants. In addition to the well-established reduction of friction and wear that DLC films generally provide, we show here that another property, low adhesiveness with PMMA, is another significant benefit in the use of DLC films.

This is a preview of subscription content, log in to check access.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

References

  1. 1.

    B. Bhushan, Diamond Relat. Mater. 8 (1999) 1985

  2. 2.

    M.J. Mirtich, M.T. Kussmaul, B.A. Banks, J.S. Sovey, NASA Tech. Briefs 27–28 (1990) 1

  3. 3.

    A.A. Voevodin, M.S. Donley, J.S. Zabinski, J.E. Bultman, Surf. Coat. Technol. 77 (1995) 534

  4. 4.

    T. Michler and K. Taube, Metal Form. 32 (1998) 23

  5. 5.

    R. Hauert, Diam. Rel. Mat. 12 (2003) 583

  6. 6.

    A.H. Lettington, Carbon 36 (1998) 555

  7. 7.

    G. Dearnaley, Clin. Mater. 12 (1993) 237

  8. 8.

    N.S. Tambe, B. Bhushan, J. Vac. Sci. Technol. - A 23 (2005) 830

  9. 9.

    A. Erdemir, F.A. Nichols, X.Z. Pan, R. Wei, P.J. Wilbur, Diamond Relat. Mater. 3 (1994) 119

  10. 10.

    K. Oguri, T. Arai, J. Mater. Res. 7 (1992) 1313

  11. 11.

    S. Anders, A. Anders, I.G. Brown, Plasma Sour. – Sci. Technol. 4 (1995) 1

  12. 12.

    B.K. Gupta, B. Bhushan, Wear 190 (1995) 110

  13. 13.

    K.J. Cuomo, D.L. Pappas, J. Bruley, J.P. Doyle, K.L. Seagner, J. Appl. Phys. 70 (1991) 1706

  14. 14.

    S. Sundararajan, B. Bhushan, Wear 225–229 (1999) 678

  15. 15.

    I.L. Singer, S.D. Dvorak, K.J. Wahl, T.W. Scharf, J. Vac. Sci. Technol. - A 21 (2003) 232

  16. 16.

    C. Donnet, J. Fontaine, A. Grill, T.L. Mogne, Tribol. Lett. 9 (2001) 137

  17. 17.

    F.E. Kennedy, D.L.A. Erdemir, J.B. Woodford, T. Kato, Wear 255 (2005) 854

  18. 18.

    J. Hershberger, O. Ozturk, O.O. Ajayi, J.B. Woodford, A. Erdemir, R.A. Erck, G.R. Fenske, Surf. Coat. Technol. 179 (2004) 237

  19. 19.

    P.W. Sandstrom, K. Sridharan, J.R. Conrad, Wear 166 (1993) 163

  20. 20.

    K. Schouterden, B. Blanpain, J.P. Cells, O. Vingsbo, Wear 181–183 (1995) 86

  21. 21.

    D. Klaffke, A. Skopp, Surf. Coat. Technol. 98 (1998) 953

  22. 22.

    D. Drees, J. Celis, S. Achanta, Surf. Coat. Technol. 188–189 (2004) 511

  23. 23.

    S.R. Brown, (ed). Materials Evaluation under Fretting Conditions (ASTM Special Technical Publications, USA, 1981) 780

  24. 24.

    R.B. Waterhouse, Fretting Corrosion (Pergamon, New York, 1971)

  25. 25.

    P.L. Hurricks, Wear 30 (1974) 189

  26. 26.

    N.P. Suh, Wear 44 (1977) 1

  27. 27.

    J.A. Heimberg, K.J. Wahl, I.L. Singer, A. Erdemir, Appl. Phys. Lett. 78 (2001) 1

  28. 28.

    P. Dickrell, W. Sawyer, A. Erdemir, J. Tribol. 126 (2004) 615

  29. 29.

    P. Dickrell, W. Sawyer, J. Heimberg, I. Singer, K. Wahl, A. Erdemir, Trans. ASME 127 (2005) 82

  30. 30.

    Q. Wei, J. Sankar, J. Narayan, Surf. Coat. Technol. 146–147 (2001) 250

  31. 31.

    M. Grischke, K. Bewilogua, H. Dimigen, Mater. Manufact. Process. 8 (1993) 407

  32. 32.

    M. Scherge, X. Li, J. Schaefer, Tribol. Lett. 6 (1999) 215

  33. 33.

    W. vanSpengen, R. Puers, I. DeWolf, J. Micromech Microeng 12 (2002) 702

  34. 34.

    M. Grischke, K. Bewilogua, K. Trojan, H. Dimigen, Surf. Coat. Technol. 74–75 (1995) 739

  35. 35.

    C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, M. Belin, Surf. Coat. Technol. 94–95 (1997) 531

  36. 36.

    S.A. Visser, C.E. Hewitt, J. Fornalik, G. Braunstein, C. Srividya, S.V. Babu, Surf. Coat. Technol. 96 (1997) 210

  37. 37.

    J. Schwarz, M. Schmidt, A. Ohl, Surf. Coat. Technol. 98 (1998) 859

  38. 38.

    C.G. Fountzoulas, J.D. Demaree, W.E. Kosik, W. Franzen, W. Croft, J.K. Hiryonen, Mater. Res. Soc. Symp. Proc. 279 (1993) 645

  39. 39.

    C. Donnet, T.L. Mogne, L. Ponsonnet, M. Belin, A. Grill, V. Patel, C. Jahnes, Tribol. Lett. 4 (1998) 259

  40. 40.

    S. Miyake, I. Takahashi, H. Watanabe, H. Yoshihara, ASLE Trans. 30 (1987) 21

  41. 41.

    R.S. Butter, D.R. Waterman, A.H. Lettington, R.T. Ramos, E.J. Fordham, Thin Sol Films 311 (1997) 107

  42. 42.

    K.R. Lee, M.G. Kim, S.J. Cho, K.Y. Eun, T.Y. Seong, Thin Sol Films 308 (1997) 263–267

  43. 43.

    A. Varma, V. Palshin, E.I. Meletis, Surf. Coat. Technol. 148 (2001) 305

  44. 44.

    X. He, K. Walter, M. Nastasi, S. Lee, M. Fung, J. Vac. Sci. Technol. A 18 (2000) 2143

  45. 45.

    A. Anders, (ed). Handbook of Plasma Immersion Ion Implantation and Film Deposition (John Wiley & Sons, 2000)

  46. 46.

    J.R. Conrad, U.S. Patent #4764394 (1988)

  47. 47.

    K. Sridharan, J.R. Conrad, F.J. Worzala, R.A. Dodd, Mater. Sci. Eng. - A 128 (1990) 259

  48. 48.

    K. Sridharan, R.R. Reeber, Advan. Mater. Process. 12 (1994) 21

  49. 49.

    D.J. Rej, Handbook of Thin Film Processing Technology, Plasma Immersion Ion Implantation (IOP Publishing Ltd., Bristol, 1996)

  50. 50.

    P.W. Sandstrom, U.S. Patent #5375451 (1994)

  51. 51.

    N. Savvides, T. Bell, J. Appl. Phys. 72 (1992) 2791

  52. 52.

    S. Achanta, D. Drees, J. Celis, Wear 259 (2005) 719

  53. 53.

    M. Hakovirta, R. Verda, X. He, M. Nastasi, Diamond Relat. Mater. 10 (2001) 1486

  54. 54.

    R. Hatada, K. Baba, Nuc. Instrum. Met. Phys. Res. B 148 (1999) 655

  55. 55.

    G. Yu, B. Tay, Z. Sun, Surf. Coat. Technol. 191 (2005) 236

  56. 56.

    K. Jia, Y. Li, T. Fischer, B. Gallois, J. Mater. Res/ 10 (1995) 1403

  57. 57.

    D. Kim, T. Fischer, B. Gallois, Surf. Coat. Technol. 49 (1991) 537

  58. 58.

    J.N. Israelachvili, Intermolecular and Surface Forces 2nd Edition, (Academic Press, London, 1991)

  59. 59.

    I.L. Singer, S. Fayeulle, P.D. Ehni, Wear 149 (1991) 375

  60. 60.

    I. Grigoriev, E. Meilikhov, (eds). CRC Handbook of Physical Quantities (CRC Press, 1996)

  61. 61.

    L. Tuchinskiy, E. Veksler, R. Loutfy, M. Williams, Tribol. Trans. 43 (2000) 603

  62. 62.

    C.C. Liu, J.L. Huang, Mater. Sci. Eng. - A 384 (2004) 299

  63. 63.

    Plastics Design Library, Fatigue and Tribological Properties of Plastics and Elastomers (William Andrew Publishing, New York, 1995)

  64. 64.

    H. Holleck, J. Vac. Sci. Technol. - A 4 (1986) 2661

  65. 65.

    F. Tsuchiya, H. Suzuki, e-J. Surf. Sci. Nanotechnol. 3 (2005) 421

  66. 66.

    X. He, K. Walter, M. Nastasi, S. Lee, X. Sun, Thin Sol. Films 355–366 (1999) 167

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research under contract number FA9550-05-1-0204. The authors are grateful to Mr. Perry Sandstrom of the University of Wisconsin for his assistance with the small amplitude reciprocating wear tester.

Author information

Correspondence to Kumar Sridharan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bares, J.A., Sumant, A.V., Grierson, D.S. et al. Small amplitude reciprocating wear performance of diamond-like carbon films: dependence of film composition and counterface material. Tribol Lett 27, 79–88 (2007). https://doi.org/10.1007/s11249-007-9209-x

Download citation

Keywords

  • small amplitude reciprocating wear
  • diamond-like carbon films
  • plasma
  • friction