Tribology Letters

, Volume 27, Issue 1, pp 79–88 | Cite as

Small amplitude reciprocating wear performance of diamond-like carbon films: dependence of film composition and counterface material

  • Jason A. Bares
  • Anirudha V. Sumant
  • David S. Grierson
  • Robert W. Carpick
  • Kumar Sridharan
Original Paper

Abstract

Small amplitude (50 μm) reciprocating wear of hydrogen-containing diamond-like carbon (DLC) films of different compositions has been examined against silicon nitride and polymethyl-methacrylate (PMMA) counter-surfaces, and compared with the performance of an uncoated steel substrate. Three films were studied: a DLC film of conventional composition, a fluorine-containing DLC film (F-DLC), and silicon-containing DLC film. The films were deposited on steel substrates from plasmas of organic precursor gases using the Plasma Immersion Ion Implantation and Deposition (PIIID) process, which allows for the non-line-of-sight deposition of films with tailored compositions. The amplitude of the resistive frictional force during the reciprocating wear experiments was monitored in situ, and the magnitude of film damage due to wear was evaluated using optical microscopy, optical profilometry, and atomic force microscopy. Wear debris was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In terms of friction, the DLC and silicon-containing DLC films performed exceptionally well, showing friction coefficients less than 0.1 for both PMMA and silicon nitride counter-surfaces. DLC and silicon-containing DLC films also showed significant reductions in transfer of PMMA compared with the uncoated steel. The softer F-DLC film performed similarly well against PMMA, but against silicon nitride, friction displayed nearly periodic variations indicative of cyclic adhesion and release of worn film material during the wear process. The results demonstrate that the PIIID films achieve the well-known advantageous performance of other DLC films, and furthermore that the film performance can be significantly affected by the addition of dopants. In addition to the well-established reduction of friction and wear that DLC films generally provide, we show here that another property, low adhesiveness with PMMA, is another significant benefit in the use of DLC films.

Keywords

small amplitude reciprocating wear diamond-like carbon films plasma friction 

Notes

Acknowledgments

This work was supported by the Air Force Office of Scientific Research under contract number FA9550-05-1-0204. The authors are grateful to Mr. Perry Sandstrom of the University of Wisconsin for his assistance with the small amplitude reciprocating wear tester.

References

  1. 1.
    B. Bhushan, Diamond Relat. Mater. 8 (1999) 1985CrossRefGoogle Scholar
  2. 2.
    M.J. Mirtich, M.T. Kussmaul, B.A. Banks, J.S. Sovey, NASA Tech. Briefs 27–28 (1990) 1Google Scholar
  3. 3.
    A.A. Voevodin, M.S. Donley, J.S. Zabinski, J.E. Bultman, Surf. Coat. Technol. 77 (1995) 534Google Scholar
  4. 4.
    T. Michler and K. Taube, Metal Form. 32 (1998) 23Google Scholar
  5. 5.
    R. Hauert, Diam. Rel. Mat. 12 (2003) 583CrossRefGoogle Scholar
  6. 6.
    A.H. Lettington, Carbon 36 (1998) 555CrossRefGoogle Scholar
  7. 7.
    G. Dearnaley, Clin. Mater. 12 (1993) 237PubMedCrossRefGoogle Scholar
  8. 8.
    N.S. Tambe, B. Bhushan, J. Vac. Sci. Technol. - A 23 (2005) 830CrossRefADSGoogle Scholar
  9. 9.
    A. Erdemir, F.A. Nichols, X.Z. Pan, R. Wei, P.J. Wilbur, Diamond Relat. Mater. 3 (1994) 119CrossRefGoogle Scholar
  10. 10.
    K. Oguri, T. Arai, J. Mater. Res. 7 (1992) 1313ADSGoogle Scholar
  11. 11.
    S. Anders, A. Anders, I.G. Brown, Plasma Sour. – Sci. Technol. 4 (1995) 1CrossRefADSGoogle Scholar
  12. 12.
    B.K. Gupta, B. Bhushan, Wear 190 (1995) 110CrossRefGoogle Scholar
  13. 13.
    K.J. Cuomo, D.L. Pappas, J. Bruley, J.P. Doyle, K.L. Seagner, J. Appl. Phys. 70 (1991) 1706CrossRefADSGoogle Scholar
  14. 14.
    S. Sundararajan, B. Bhushan, Wear 225–229 (1999) 678CrossRefGoogle Scholar
  15. 15.
    I.L. Singer, S.D. Dvorak, K.J. Wahl, T.W. Scharf, J. Vac. Sci. Technol. - A 21 (2003) 232CrossRefADSGoogle Scholar
  16. 16.
    C. Donnet, J. Fontaine, A. Grill, T.L. Mogne, Tribol. Lett. 9 (2001) 137CrossRefGoogle Scholar
  17. 17.
    F.E. Kennedy, D.L.A. Erdemir, J.B. Woodford, T. Kato, Wear 255 (2005) 854CrossRefGoogle Scholar
  18. 18.
    J. Hershberger, O. Ozturk, O.O. Ajayi, J.B. Woodford, A. Erdemir, R.A. Erck, G.R. Fenske, Surf. Coat. Technol. 179 (2004) 237CrossRefGoogle Scholar
  19. 19.
    P.W. Sandstrom, K. Sridharan, J.R. Conrad, Wear 166 (1993) 163CrossRefGoogle Scholar
  20. 20.
    K. Schouterden, B. Blanpain, J.P. Cells, O. Vingsbo, Wear 181–183 (1995) 86Google Scholar
  21. 21.
    D. Klaffke, A. Skopp, Surf. Coat. Technol. 98 (1998) 953CrossRefGoogle Scholar
  22. 22.
    D. Drees, J. Celis, S. Achanta, Surf. Coat. Technol. 188–189 (2004) 511CrossRefGoogle Scholar
  23. 23.
    S.R. Brown, (ed). Materials Evaluation under Fretting Conditions (ASTM Special Technical Publications, USA, 1981) 780Google Scholar
  24. 24.
    R.B. Waterhouse, Fretting Corrosion (Pergamon, New York, 1971)Google Scholar
  25. 25.
    P.L. Hurricks, Wear 30 (1974) 189CrossRefGoogle Scholar
  26. 26.
    N.P. Suh, Wear 44 (1977) 1CrossRefGoogle Scholar
  27. 27.
    J.A. Heimberg, K.J. Wahl, I.L. Singer, A. Erdemir, Appl. Phys. Lett. 78 (2001) 1CrossRefGoogle Scholar
  28. 28.
    P. Dickrell, W. Sawyer, A. Erdemir, J. Tribol. 126 (2004) 615CrossRefGoogle Scholar
  29. 29.
    P. Dickrell, W. Sawyer, J. Heimberg, I. Singer, K. Wahl, A. Erdemir, Trans. ASME 127 (2005) 82CrossRefGoogle Scholar
  30. 30.
    Q. Wei, J. Sankar, J. Narayan, Surf. Coat. Technol. 146–147 (2001) 250CrossRefGoogle Scholar
  31. 31.
    M. Grischke, K. Bewilogua, H. Dimigen, Mater. Manufact. Process. 8 (1993) 407Google Scholar
  32. 32.
    M. Scherge, X. Li, J. Schaefer, Tribol. Lett. 6 (1999) 215CrossRefGoogle Scholar
  33. 33.
    W. vanSpengen, R. Puers, I. DeWolf, J. Micromech Microeng 12 (2002) 702CrossRefGoogle Scholar
  34. 34.
    M. Grischke, K. Bewilogua, K. Trojan, H. Dimigen, Surf. Coat. Technol. 74–75 (1995) 739CrossRefGoogle Scholar
  35. 35.
    C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, M. Belin, Surf. Coat. Technol. 94–95 (1997) 531CrossRefGoogle Scholar
  36. 36.
    S.A. Visser, C.E. Hewitt, J. Fornalik, G. Braunstein, C. Srividya, S.V. Babu, Surf. Coat. Technol. 96 (1997) 210CrossRefGoogle Scholar
  37. 37.
    J. Schwarz, M. Schmidt, A. Ohl, Surf. Coat. Technol. 98 (1998) 859CrossRefGoogle Scholar
  38. 38.
    C.G. Fountzoulas, J.D. Demaree, W.E. Kosik, W. Franzen, W. Croft, J.K. Hiryonen, Mater. Res. Soc. Symp. Proc. 279 (1993) 645Google Scholar
  39. 39.
    C. Donnet, T.L. Mogne, L. Ponsonnet, M. Belin, A. Grill, V. Patel, C. Jahnes, Tribol. Lett. 4 (1998) 259CrossRefGoogle Scholar
  40. 40.
    S. Miyake, I. Takahashi, H. Watanabe, H. Yoshihara, ASLE Trans. 30 (1987) 21Google Scholar
  41. 41.
    R.S. Butter, D.R. Waterman, A.H. Lettington, R.T. Ramos, E.J. Fordham, Thin Sol Films 311 (1997) 107CrossRefGoogle Scholar
  42. 42.
    K.R. Lee, M.G. Kim, S.J. Cho, K.Y. Eun, T.Y. Seong, Thin Sol Films 308 (1997) 263–267CrossRefGoogle Scholar
  43. 43.
    A. Varma, V. Palshin, E.I. Meletis, Surf. Coat. Technol. 148 (2001) 305CrossRefGoogle Scholar
  44. 44.
    X. He, K. Walter, M. Nastasi, S. Lee, M. Fung, J. Vac. Sci. Technol. A 18 (2000) 2143CrossRefADSGoogle Scholar
  45. 45.
    A. Anders, (ed). Handbook of Plasma Immersion Ion Implantation and Film Deposition (John Wiley & Sons, 2000)Google Scholar
  46. 46.
    J.R. Conrad, U.S. Patent #4764394 (1988)Google Scholar
  47. 47.
    K. Sridharan, J.R. Conrad, F.J. Worzala, R.A. Dodd, Mater. Sci. Eng. - A 128 (1990) 259CrossRefGoogle Scholar
  48. 48.
    K. Sridharan, R.R. Reeber, Advan. Mater. Process. 12 (1994) 21Google Scholar
  49. 49.
    D.J. Rej, Handbook of Thin Film Processing Technology, Plasma Immersion Ion Implantation (IOP Publishing Ltd., Bristol, 1996)Google Scholar
  50. 50.
    P.W. Sandstrom, U.S. Patent #5375451 (1994)Google Scholar
  51. 51.
    N. Savvides, T. Bell, J. Appl. Phys. 72 (1992) 2791CrossRefADSGoogle Scholar
  52. 52.
    S. Achanta, D. Drees, J. Celis, Wear 259 (2005) 719CrossRefGoogle Scholar
  53. 53.
    M. Hakovirta, R. Verda, X. He, M. Nastasi, Diamond Relat. Mater. 10 (2001) 1486CrossRefGoogle Scholar
  54. 54.
    R. Hatada, K. Baba, Nuc. Instrum. Met. Phys. Res. B 148 (1999) 655CrossRefADSGoogle Scholar
  55. 55.
    G. Yu, B. Tay, Z. Sun, Surf. Coat. Technol. 191 (2005) 236CrossRefGoogle Scholar
  56. 56.
    K. Jia, Y. Li, T. Fischer, B. Gallois, J. Mater. Res/ 10 (1995) 1403ADSGoogle Scholar
  57. 57.
    D. Kim, T. Fischer, B. Gallois, Surf. Coat. Technol. 49 (1991) 537CrossRefGoogle Scholar
  58. 58.
    J.N. Israelachvili, Intermolecular and Surface Forces 2nd Edition, (Academic Press, London, 1991)Google Scholar
  59. 59.
    I.L. Singer, S. Fayeulle, P.D. Ehni, Wear 149 (1991) 375CrossRefGoogle Scholar
  60. 60.
    I. Grigoriev, E. Meilikhov, (eds). CRC Handbook of Physical Quantities (CRC Press, 1996)Google Scholar
  61. 61.
    L. Tuchinskiy, E. Veksler, R. Loutfy, M. Williams, Tribol. Trans. 43 (2000) 603Google Scholar
  62. 62.
    C.C. Liu, J.L. Huang, Mater. Sci. Eng. - A 384 (2004) 299CrossRefGoogle Scholar
  63. 63.
    Plastics Design Library, Fatigue and Tribological Properties of Plastics and Elastomers (William Andrew Publishing, New York, 1995)Google Scholar
  64. 64.
    H. Holleck, J. Vac. Sci. Technol. - A 4 (1986) 2661CrossRefADSGoogle Scholar
  65. 65.
    F. Tsuchiya, H. Suzuki, e-J. Surf. Sci. Nanotechnol. 3 (2005) 421CrossRefGoogle Scholar
  66. 66.
    X. He, K. Walter, M. Nastasi, S. Lee, X. Sun, Thin Sol. Films 355–366 (1999) 167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jason A. Bares
    • 1
    • 2
  • Anirudha V. Sumant
    • 3
    • 4
  • David S. Grierson
    • 3
  • Robert W. Carpick
    • 3
    • 5
  • Kumar Sridharan
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of Wisconsin MadisonMadisonUSA
  2. 2.University of FloridaGainesvilleUSA
  3. 3.Department of Engineering PhysicsUniversity of WisconsinMadisonUSA
  4. 4.Argonne National LaboratoryArgonneUSA
  5. 5.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations