Advertisement

Tribology Letters

, Volume 24, Issue 1, pp 85–90 | Cite as

Tunable friction behavior of oriented carbon nanotube films

  • P.L. Dickrell
  • S.K. Pal
  • G.R. Bourne
  • C. Muratore
  • A.A. Voevodin
  • P.M. Ajayan
  • L.S. Schadler
  • W.G. Sawyer
Article

Abstract

Measured friction coefficients of carbon nanotubes vary widely from μ < 0.1–μ > 1.0 [1, 2, 3, 4, 5, 6], while theoretical studies suggest intrinsically high friction coefficients, approaching unity [7]. Here we report that measured friction coefficients of MWNT films are strong functions of surface chemistry and temperature, but are not dependent on the presence of water vapor. We hypothesize that the origin of the temperature dependence arises from the interaction of the surface chemical groups on the nanotubes [8, 9, 10, 11, 12] and rubbing counterface. The friction coefficient of individual films can be easily tuned by changing the surface temperature and chemistry of either the countersurface or the nanotubes, we have demonstrated the ability to create and control high and low friction pairs through plasma treatments of the nanotube films with argon, hydrogen, nitrogen, and oxygen. This behavior is completely reversible, and when coupled with the superior strength, thermal, and electrical properties of nanotubes, provides a versatile tunable, multifunctional tribological system.

Keywords

carbon nanotubes coefficient of friction micro-tribology engineered surfaces 

Notes

Acknowledgments

This material is based upon an AFOSR-MURI grant FA9550–04–1-0367. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Air Force Office of Scientific Research.

References

  1. 1.
    Hirata A., Yoshioka N (2004) Tribol. Int. 37:11–12CrossRefGoogle Scholar
  2. 2.
    Tu J. et al. (2004) Mater Lett. 58:10CrossRefGoogle Scholar
  3. 3.
    Ma X., Wang H, Yang W (2004) J. Eng. Mater. Technol.-ASME 126:3Google Scholar
  4. 4.
    Hu J. et al. (2005) Tribol. Lett. 19:2CrossRefGoogle Scholar
  5. 5.
    Miyoshi K. et al. (2005) Tribol. Lett. 19:3CrossRefGoogle Scholar
  6. 6.
    Dickrell P. et al. (2005) Tribol. Lett. 18:1CrossRefGoogle Scholar
  7. 7.
    Sinnott S. et al. (1998) Carbon 36:1–2CrossRefGoogle Scholar
  8. 8.
    Felten A. et al. (2005) J. Appl. Phys. 98:7CrossRefGoogle Scholar
  9. 9.
    Chirila V., Marginean G., Brandl W. (2005) Surf. Coat. Technol. 200:1–4CrossRefGoogle Scholar
  10. 10.
    Chopra N., Majumder M., Hinds B. (2005) Adv. Funct. Mater. 15:5CrossRefGoogle Scholar
  11. 11.
    Utegulov Z. et al. (2005) J. Appl. Phys. 97:10Google Scholar
  12. 12.
    Bubert H. et al. (2003) Diam. Relat. Mater. 12:3–7CrossRefGoogle Scholar
  13. 13.
    Wei B. et al. (2002) Nature 416:6880CrossRefGoogle Scholar
  14. 14.
    Langer L. et al. (1994) J. Mater. Res. 9:4Google Scholar
  15. 15.
    Heremans J., Olk C., Morelli D. (1994) Phys. Rev. B 49:21CrossRefGoogle Scholar
  16. 16.
    Langer L. et al. (1996) Phys. Rev. Lett. 76:3CrossRefGoogle Scholar
  17. 17.
    ISSI J. et al. (1995) Carbon 33:7CrossRefGoogle Scholar
  18. 18.
    Treacy M., Ebbesen T., Gibson J. (1996) Nature 381:6584CrossRefGoogle Scholar
  19. 19.
    Ni B., Sinnott S. (2001) Surf. Sci. 487:1–3CrossRefGoogle Scholar
  20. 20.
    Cao A. et al. (2005) Science 310:5752CrossRefGoogle Scholar
  21. 21.
    Legrand A.P. (1998) The surface properties of silicas. Wiley, New YorkGoogle Scholar
  22. 22.
    Feng W. et al. (2004) JPN J. Appl. Phys. 2 43:1A-BCrossRefGoogle Scholar
  23. 23.
    Khare B. et al. (2002) Nano Lett. 2:1CrossRefGoogle Scholar
  24. 24.
    Turq V. et al. (2005) Tribol. Lett. 19:1CrossRefGoogle Scholar
  25. 25.
    McCook N.L. et al. (2005) Tribol. Lett. 20:2CrossRefGoogle Scholar
  26. 26.
    Kikuma J. et al., J. Electron Spectrosc. 88(1998)Google Scholar
  27. 27.
    Marton D. et al. (1994) Phys. Rev. Lett. 73:1CrossRefGoogle Scholar
  28. 28.
    Kim K. et al. (2003) Polymer 44:20Google Scholar
  29. 29.
    Voevodin A. et al. (2002) J. Appl. Phys. 92:9Google Scholar
  30. 30.
    Neidhardt J., Hultman L., Czigany Z. (2004) Carbon 42:12–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • P.L. Dickrell
    • 1
  • S.K. Pal
    • 2
  • G.R. Bourne
    • 1
  • C. Muratore
    • 3
  • A.A. Voevodin
    • 3
  • P.M. Ajayan
    • 2
  • L.S. Schadler
    • 2
  • W.G. Sawyer
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  3. 3.Air Force Research LaboratoryWright Patterson AFBUSA

Personalised recommendations