Tribology Letters

, Volume 24, Issue 3, pp 257–263 | Cite as

Wear of a single asperity using Lateral Force Microscopy

Article

Abstract

This report describes an observation of alternating transitions between linear (Amontons) and non-linear friction-load behavior during Lateral Force Microscope experiments using a silicon tip sliding on a quartz surface. Initially, a transition from linear to non-linear behavior was attributed to nanoscale ‘running-in’ of the tip to form a single contact junction at the interface. Once this had occurred, a non-linear relationship between friction and applied load was observed during a number of loading and unloading cycles. For higher compressive loads, a further transition to a more linear friction-load behavior was attributed to nanoscale wear in the contact zone. Notably, when applied load was reduced below this ‘high-load’ transition point, the same non-linear friction-load behavior was again observed, but with a larger (friction per load) magnitude than seen previously. This cycle was repeated five times in these experiments, and each time, switching between non-linear and linear friction-load behavior occurred, along with a progressive increase in friction (per load) each time load was reduced below the transition point. The progressive increase in friction is attributed to an increased area of contact, caused by nanoscale wear at higher applied loads. An increase in tip size was confirmed by tip profiling before and after experiment. By progressively wearing the asperity at higher loads, the (interfacial or true) contact area, A, between the surfaces could be progressively increased, and as a result, a progressive increase in interfacial sliding friction, F f , was obtained at lower loads (according to F f  = τA).

Keywords

lateral (friction) force microscope friction and wear Amontons laws contact mechanics 

Notes

Acknowledgment

MGR is grateful for the receipt of a University of Newcastle Postgraduate Research Scholarship (UNRS External).

References

  1. 1.
    “Handbook of Micro/Nanotribology.” 2nd edn., B. Bhushan, ed. (CRC Press, Boca Raton, 1999)Google Scholar
  2. 2.
    G. Amontons, Mémoires de l’ Académie Royal, A (1699) 257Google Scholar
  3. 3.
    Bowden F.P., Tabor D., (1954) The Friction and Lubrication of Solids. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Gao J., Luedtke W.D., Gourdon D., Ruths M., Israelachvili J.N., Uzi Landman, (2004) J. Phys. Chem. B. 108: 3410CrossRefGoogle Scholar
  5. 5.
    Carpick R.W., Ogletree D.F., Salmeron M., (1999) J. Colloid Interface Sci. 211:395CrossRefGoogle Scholar
  6. 6.
    Johnson K.L., (1987) Contact Mechanics. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Johnson K.L., Kendall K., Roberts A.D., (1971) Proc. Roy. Soc. (London) A324: 301Google Scholar
  8. 8.
    Derjaguin B.V., Muller V.M., Toporov Yu.P., (1975) J. Colloid Interface Sci 53(2): 314CrossRefGoogle Scholar
  9. 9.
    Maugis D., (1992) J. Colloid Interface Sci 150(1): 243CrossRefGoogle Scholar
  10. 10.
    Maugis D., (2000) Contact, Adhesion and Rupture of Elastic Solids Springer-Verlag, BerlinGoogle Scholar
  11. 11.
    Archard J.F., (1957) Proc. Roy. Soc. (London) A243: 190Google Scholar
  12. 12.
    Greenwood J.A., Williamson J.P.B., (1966) Proc. Roy. Soc. (London) A29: 300Google Scholar
  13. 13.
    Persson B.N.J., (1998) Sliding Friction Springer-Verlag, BerlinGoogle Scholar
  14. 14.
    Homola A.M., Israelachvili J.N., McGuiggan P.M., Hellgeth J.W., (1990) Wear 136: 65CrossRefGoogle Scholar
  15. 15.
    Vigil G., Xu Z., Steinberg S., Israelachvili J.N., (1994) J. Colloid Interface Sci. 165: 367CrossRefGoogle Scholar
  16. 16.
    Putman C.A.J., Igarashi M., Kaneko R., (1995) App. Phys. Lett. 66: 3221CrossRefGoogle Scholar
  17. 17.
    Schwarz U.D., Allers W., Gensterblum G., Wiesendanger R., (1995) Phys. Rev. B. 52: 14976CrossRefGoogle Scholar
  18. 18.
    Carpick R.W., Agrait N., Ogletree D.F., Salmeron M., (1996) J. Vac. Sci. Technol. B. 14(2): 1289CrossRefGoogle Scholar
  19. 19.
    Carpick R.W., Agrait N., Ogletree D.F., Salmeron M., (1996) Langmuir 12: 3334CrossRefGoogle Scholar
  20. 20.
    Enachescu M., van der Oetelaar R.J.A., Carpick R.W., Ogletree D.F., Flipse C.F.J., Salmeron M., (1999) Trib. Lett. 7: 73CrossRefGoogle Scholar
  21. 21.
    Biggs S., Cain R.G., Page N.W., (2000) J. Colloid Interface Sci. 232: 133CrossRefGoogle Scholar
  22. 22.
    Bogdanovic G., Tiberg F., Rutland M.W., (2001) Langmuir 17: 5911CrossRefGoogle Scholar
  23. 23.
    Geology Department, University of Newcastle, NSW, AustraliaGoogle Scholar
  24. 24.
    Liu E., Blanpain B., Celis J.P., (1996) Wear 192: 141CrossRefGoogle Scholar
  25. 25.
    Cain R.G., Reitsma M.G., Biggs S., Page N.W., (2001) Rev. Sci. Instrum 72(8): 3304CrossRefGoogle Scholar
  26. 26.
    Silicon-MDT, Ltd., Moscow, RussiaGoogle Scholar
  27. 27.
    Cleveland J.P., Manne S., Hansma P.K., (1993) Rev. Sci. Instrum 64(2): 403CrossRefGoogle Scholar
  28. 28.
    R.G. Cain, Friction in a Granular Material, Ph.D. Dissertation. University of Newcastle, NSW, Australia (1999)Google Scholar
  29. 29.
    Cain R.G., Biggs S., Page N.W., (2000) J. Colloid Interface Sci 227: 55CrossRefGoogle Scholar
  30. 30.
    M.G. Reitsma, Microscale friction in geomaterials, Ph.D. Dissertation. University of Newcastle, NSW, Australia (2003)Google Scholar
  31. 31.
    Sheiko S.S., M. Möller, E.M.C.M. Reuvekamp, H.W. Zandbergen, (1993) Phys. Rev. B 48(8): 5675CrossRefGoogle Scholar
  32. 32.
    Hu J., Xiao X.-d., Ogletree D.F., Salmeron M., (1995) Surface Science 327: 358CrossRefGoogle Scholar
  33. 33.
    Kopta S., Salmeron M., (2000) J. Chem. Phys 113: 8249CrossRefGoogle Scholar
  34. 34.
    Ghandi S.K., (1994) VSLI Fabrication Principles Wiley, New YorkGoogle Scholar
  35. 35.
    Zhang L., Tanaka H., (1998) Trib. Int 31(8): 425CrossRefGoogle Scholar
  36. 36.
    Zhao X., Bhushan B., (1998) Wear 223: 66CrossRefGoogle Scholar
  37. 37.
    Zhang L., Zarudi I., (1999) Wear 669: 225–229Google Scholar
  38. 38.
    Gerberich W., Mook W., (2005) Nature Mater 4: 577–578CrossRefGoogle Scholar
  39. 39.
    Schuh C.A., Mason J.K., Lund A.C., (2005) Nature Mater 4: 617–621CrossRefGoogle Scholar
  40. 40.
    Johnson K.L., (1997) Proc. R. Soc. (London) A 453: 163Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M.G. Reitsma
    • 1
    • 3
  • R.G. Cain
    • 1
  • S. Biggs
    • 2
  • D.W. Smith
    • 1
  1. 1.School of EngineeringThe University of NewcastleCallaghanAustralia
  2. 2.Institute of Particle Science and EngineeringThe University of LeedsLeedsUK
  3. 3.Materials Science and Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations