Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nano particles’ behavior in non-Newtonian slurry in mechanical process of CMP

Abstract

Thin fluid film is thought to be formed between the wafer surface and the pad asperity. Hydrodynamic pressure on the surface asperity is periodically generated when particles are passing through it. Fatigue fracture occurs under the effect of periodic pressure, and the fatigue begins from the top to the bottom of the asperity. The removal rate is calculated based on the energy-balance fracture theory. Particle size and its relative velocity are important parameters that affect the polishing effect. Using the multiphase model and the power–law viscosity model of the slurry, particle’s velocity and its distribution in the slurry are numerically calculated. The results indicate that the slurry film thickness needs to be in the same order of the particle size that the particle can generate effective hydrodynamic pressure to remove the asperity materials.

This is a preview of subscription content, log in to check access.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

References

  1. 1.

    M. Bielmann, U. Mahajan, Solid-state Lett. 2 (1999) 401–403

  2. 2.

    C.H. Zhou, L. Shan, Tribol. Trans. 45 (2002) 230–232

  3. 3.

    Y. Liu, K. Zhang, Microelectron. Eng. 66 (2003) 438–444

  4. 4.

    G.B. Basim, J.J. Adler, J. Electronchem. Soc. 147 (2000) 3523–3528

  5. 5.

    C.H. Zhou, L. Shan, Lubric. Eng. 58 (2002) 35–41

  6. 6.

    H. Lei, J. Luo, Wear 257 (2004) 461–470

  7. 7.

    Y. Zhao, L. Chang, Wear 252 (2002) 220–226

  8. 8.

    J. Larsen-Basse, H. Liang, Wear 233–235 (1999) 647–654

  9. 9.

    S.R. Runnels, L.M. Eyman, J. Electrochem. Soc. 141(6) (1994) 1698–1701

  10. 10.

    S. Sundararajan, D.G. Thakurta, J. Electrochem. Soc. 146(2) (1999) 761–766

  11. 11.

    S.M. Allameh, P. Shrotriya, J. Microelectromech. Syst. 3 (2003) 313–323

  12. 12.

    Y. Moon, Mechanical aspect of the material removal mechanism in chemical mechanical polishing, PhD Thesis University of California, Berkeley, 1999, 170

  13. 13.

    G. Dipto, B. Thakurtaa, L. Christopher, B. Borsta, W. Donald, Thin Solid Films 366 (2000) 181–190

  14. 14.

    D.J. Stein, J.L. Cecchi, J. Mater. Res. 14(9) (1999) 3695–3706

  15. 15.

    M. Bielman, U. Mahajan, R.K. Singh, Electrochem. Solid-state Lett. 2(8) (1999) 401–403

  16. 16.

    H.G. Elrod, A general theory for laminar lubrication with Reynolds roughness [J], 101(1) (1979) 8–14

  17. 17.

    O. Reynolds, Philos. Trans. R. Soc. Lond. 177 (1886) 157–234

  18. 18.

    J.S. Zhao, Fracture Mechanics and Fracture Physics (Huazhong Keji Press, China, 2003)

  19. 19.

    J. Furthmuller, J. Hafner, G. Kresse, Phys. Rev. B. 155(3) (1996) 7334–7351

  20. 20.

    H. Lua, 1.B. Fookesa, Y. Obengb, S. Machinskia, K.A. Richardsona, Mater. Charact. 49 (2002) 35–44

  21. 21.

    W.D. Li, W.S. Dong et al., Thin Solid Films 270 (1995) 601–606

Download references

Acknowledgments

This work is supported by the Research Fund for the Doctoral Program of Higher Education, No. 20030003026. It is also supported by NSFC Project No. 50475018 and NSFC Project No. 50505020.

Author information

Correspondence to C. Haosheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haosheng, C., Jiang, L., Darong, C. et al. Nano particles’ behavior in non-Newtonian slurry in mechanical process of CMP. Tribol Lett 24, 179–186 (2006). https://doi.org/10.1007/s11249-006-9133-5

Download citation

Keywords

  • non-Newtonian fluid
  • chemical mechanical polishing
  • nano particle
  • multiphase flow