Advertisement

Tribology Letters

, Volume 25, Issue 2, pp 117–131 | Cite as

Effects of transverse atomic steps on bilayer lubricating films of simple hydrocarbons

  • J. SugimuraEmail author
  • T. Okumura
  • Y. Yamamoto
Article

Molecular dynamics (MD) simulations were conducted in order to study the dynamic behavior and traction of bilayer lubricating films of n-hexane, cyclohexane, and n-hexadecane. Lubricants were confined between bcc iron surfaces with and without transverse grooves of mono-atomic depth. Once the system equilibrated statically, one of the solid surfaces was moved to shear the film. The results demonstrated that the traction coefficient was governed by structures of the films, which depended on the molecular structures of the lubricants and on the atomic scale geometry of the solid surfaces. Traction was high when interfacial slip between lubricant layers and solid walls occurred. Evolution of the layered structure by gradual rearrangement of the molecules and resulting slip between the lubricant layers, caused significant reduction in the traction coefficient. The atomic steps enhanced the molecular rearrangement of n-hexadecane, while they retarded or inhibited those of n-hexane and cyclohexane resulting in a relatively higher traction coefficient for stepped surfaces. Molecular orientation of the normal alkanes under shear is described by the orientational order parameter, which has a strong correlation with the traction coefficient. The steady state traction coefficient of all the three simple hydrocarbons was highest when both of the surfaces had steps, and lowest when both of the surfaces were flat.

Keywords

molecular dynamics thin film lubrication surface roughness atomic steps traction slip 

References

  1. 1.
    T.R. Thomas, Rough Surfaces, 2nd Edition. (Imperial College Press, 1999) pp 225Google Scholar
  2. 2.
    Homola A.M., Israelachvili J.N., McGuiggan P.M., Gee M.L., (1990) Wear 136:65CrossRefGoogle Scholar
  3. 3.
    Granick S., (1991) Science 253:1374CrossRefGoogle Scholar
  4. 4.
    Yoshizawa H., Chen Y.L., Israelachvili J.N., (1993) Wear 168:161CrossRefGoogle Scholar
  5. 5.
    Luengo G., Israelachvili J.N., Granick S., (1996) Wear 200:328CrossRefGoogle Scholar
  6. 6.
    Matsuoka H., Kato T., (1996) Trans. ASME, J. Tribology 118:832Google Scholar
  7. 7.
    Y. Kimura , T. Wakabayashi and J. Sugimura, in: Thinning Films and Tribological Interfaces, eds. D. Dowson et al. (Elsevier, 2000) pp 371Google Scholar
  8. 8.
    Padilla P., Toxvaerd S., (1992) J. Chem. Phys. 97(10):7667CrossRefGoogle Scholar
  9. 9.
    Yamano H., Shiota K., Miura R., Katagiri M., Kubo M., Stirling A., Broclawik E., Miyamoto A., Tsubouchi T., (1996) .Thin Solid Film 81–282:598Google Scholar
  10. 10.
    Gao J., Luedtke W.D., Landman U., (1997) J. Chem. Phys. 106:4309CrossRefGoogle Scholar
  11. 11.
    Gupta S.A., Cochran H.D., Cummings P.T., (1997) J. Chem. Phys. 107(23):10316CrossRefGoogle Scholar
  12. 12.
    Jabbarzadeh A., Atkinson J.D., Tanner R.I., (1999) J. Chem. Phys. 110(5):2612CrossRefGoogle Scholar
  13. 13.
    Balasundaram R., Jiang S., Belak J., (1999) Chemical Engineering J. 74:117CrossRefGoogle Scholar
  14. 14.
    Tamura H., Yoshida M., Kusakabe K., Chung Y.-M., Miura R., Kubo M., Teraishi K., Chatterjee A., Miyamoto A., (1999) Langmuir 15(22):7816CrossRefGoogle Scholar
  15. 15.
    Cui S.T., Cummings P.T., Cochran H.D., (2001) J. Chem. Phys. 114(16):7189CrossRefGoogle Scholar
  16. 16.
    Jabbarzadeh A., Atkinson J.D., Tanner R.I., (2000) Phys. Rev. E, 61(1):690CrossRefGoogle Scholar
  17. 17.
    Gao J., Luedtke W.D., Landman U., (2001) Tribol. Lett. 9:3CrossRefGoogle Scholar
  18. 18.
    Persson B.N.J., Samoilov V.N., Zilberman S., Nitzan A., (2002) J. Chem. Phys. 117(8):3897CrossRefGoogle Scholar
  19. 19.
    T. Okumura , J. Sugimura and Y. Yamamoto in: Tribological Research and Design for Engineering Systems, D. Dowson et a1., eds. (Elsevier, 2003) p. 225Google Scholar
  20. 20.
    Jorgensen W.L., Maxwell D.S., Tirado-Rives J., (1996) J. Am. Chem. Soc. 118:11225CrossRefGoogle Scholar
  21. 21.
    Rizzo R.C., Jorgensen W.L., (1999) J. Am. Chem. Soc. 121:4827CrossRefGoogle Scholar
  22. 22.
    Johnson R.A., (1964) Phys. Rev., 134:A1329CrossRefGoogle Scholar
  23. 23.
    Halicioglu T., Pound G.M., (1975) Phys. Stat. Sol. 30:619CrossRefGoogle Scholar
  24. 24.
    Tuckerman M., Berne B., Martyna G., (1992) J. Chem. Phys, 97:1990CrossRefGoogle Scholar
  25. 25.
    A.R. Leach , A. Molecular Modelling - Principles and Applications, Second edition. (Pearson Education Limited, 2001) p. 396Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKyushu UniversityNishi-ku, FukuokaJapan
  2. 2.Faculty of EngineeringNagasaki UniversityNagasakiJapan

Personalised recommendations