Tribology Letters

, Volume 23, Issue 3, pp 253–260 | Cite as

Analysis of lubrication failure using molecular simulation


Monte Carlo simulations of chain molecules are used to study lubricant film behavior in confined regions. Lubrication failure is studied under two possible scenarios. The first is desorption of the lubricant molecules from the gap between asperities driven by equilibrium thermodynamics with increasing temperature. The second is the physical removal (squeezing out) of lubricant molecules from between asperities in close proximity due to high loads on solid asperities. Using simulations in the grand canonical and grand isostress ensembles, combinations of load and increased temperature are evaluated for their potential to thermodynamically drive the system to a lubrication failure event.


failure analysis boundary lubrication boundary lubrication thermal effects carbon graphite wear mechanisms 



We express our gratitude to the NSF for an Integrated Graduate Education, Research and Training grant (IGERT) on Virtual Tribology. We would also like to acknowledge Professor Jane Wang for helpful discussions on lubrication failure.


  1. 1.
    Bowman W.F., Stachowiak G.W. (1996) Tribol. Lett. 2:113CrossRefGoogle Scholar
  2. 2.
    Stachowiak G.W., Batchelor A.W. (2001) Engineering Tribology. Butterworth-Heinemann, BostonGoogle Scholar
  3. 3.
    Lee S.C., Cheng H.S. (1991) ASME J. Tribol. 113:327Google Scholar
  4. 4.
    Deckman D.E., Jahanmir S., Hsu S.M. (1991) Wear 149:155CrossRefGoogle Scholar
  5. 5.
    Jahanmir S., Beltzer M. (1986) ASLE Trans. 29:423Google Scholar
  6. 6.
    Aramaki H., Cheng H.S., Zhu D. (1992) ASME J. Tribol. 114:311Google Scholar
  7. 7.
    Castro J., Seabra J. (1998) Wear 215:104CrossRefGoogle Scholar
  8. 8.
    Lee Y.Z., Ludema K.C. (1991) ASME J. Tribol. 113:295Google Scholar
  9. 9.
    Klaus E.E., Duda J.L., Chao K.K. (1991) STLE Tribol. Trans. 34:426Google Scholar
  10. 10.
    Cutiongco E.C., Chung Y.W. (1994) STLE Tribol. Trans. 37:622Google Scholar
  11. 11.
    Bailey D.M., Sayles R.S. (1991) ASME J. Tribol. 113:729CrossRefGoogle Scholar
  12. 12.
    Wang S., Komvopoulos K. (1995) ASME J. Tribol. 117:203Google Scholar
  13. 13.
    Li H., Chao K.K., Duda J.L., Klaus E.E. (1999) STLE Tribol. Trans. 42:529Google Scholar
  14. 14.
    Bowden F.P., Tabor D. (1958) Friction and Lubrication of Solids. Clarendon Press, OxfordGoogle Scholar
  15. 15.
    Vick B., Furey M.J., Iskandar K. (2000) Tribol. Int. 33:265CrossRefGoogle Scholar
  16. 16.
    Vick B., Furey M.J., Iskandar K. (1999) STLE Tribol. Trans. 42:888Google Scholar
  17. 17.
    Castro J., Seabra J. (1998) Wear 215:114CrossRefGoogle Scholar
  18. 18.
    Dyson A. (1975) Tribol. Int. 8:77CrossRefGoogle Scholar
  19. 19.
    Zhang L., Balasundaram R., Gehrke S., Jiang S. (2001) J. Chem. Phys. 114:6869CrossRefGoogle Scholar
  20. 20.
    Schoen M., Cushman J.H., Diestler D.J., Rhykerd C.L. (1988) J. Chem. Phys. 88:1394CrossRefGoogle Scholar
  21. 21.
    Lastoskie C., Gubbins K.E., Quirke N. (1993) Langmuir 9:2693CrossRefGoogle Scholar
  22. 22.
    Dominguez H., Allen M.P., Evans R. (1999) Mol. Phys. 96:209CrossRefGoogle Scholar
  23. 23.
    Cao D.P., Wang W.C. (1999) Acta Phys.-Chim. Sin. 15:581Google Scholar
  24. 24.
    Curry J.E. (2000) J. Chem. Phys. 113:2400CrossRefGoogle Scholar
  25. 25.
    Cao D.P., Wang W.C. (2002) Chem. J. Chinese U. 23:910Google Scholar
  26. 26.
    Balbuena P.B., Gubbins K.E. (1993) Langmuir 9:1801CrossRefGoogle Scholar
  27. 27.
    Cracknell R.F., Nicholson D. (1994) J. Chem. Soc. Faraday Trans. 90:1487CrossRefGoogle Scholar
  28. 28.
    Bhatia S. (1998) Langmuir 14:6231CrossRefGoogle Scholar
  29. 29.
    Shevade A.V., Jiang S.Y., Gubbins K.E. (2000) J. Chem. Phys. 113:6933CrossRefGoogle Scholar
  30. 30.
    Radhakrishnan R., Gubbins K.E., Sliwinska-Bartkowiak M. (2002) J. Chem. Phys. 116:1147CrossRefGoogle Scholar
  31. 31.
    Gelb L.D., Gubbins K.E., Radhakrishnan R., Sliwinska-Bartkowiak M. (1999) Rep. Prog. Phys. 62:1573CrossRefGoogle Scholar
  32. 32.
    Balbuena P.B., Berry D., Gubbins K.E. (1993) J. Phys. Chem. 97:937CrossRefGoogle Scholar
  33. 33.
    Chempath S., Denayer J.F.M., De Meyer K.M.A., Baron G.V., Snurr R.Q. (2004) Langmuir 20:150CrossRefGoogle Scholar
  34. 34.
    Macedonia M.D., Maginn E.J. (1999) Mol. Phys. 96:1375CrossRefGoogle Scholar
  35. 35.
    Allen M.P., Tildesley D.J. (1987) Computer Simulation of Liquids. Clarendon Press, OxfordGoogle Scholar
  36. 36.
    Gupta A., Chempath S., Sanborn M.J., Clark L.A., Snurr R.Q. (2003) Mol. Simulat. 29:29CrossRefGoogle Scholar
  37. 37.
    Gao J., Luedtke W.D., Landman U. (1996) J. Chem. Phys. 106:4309CrossRefGoogle Scholar
  38. 38.
    Wang J.C., Fichthorn K.A. (2002) J. Chem. Phys. 116:410CrossRefGoogle Scholar
  39. 39.
    Porcheron F., Rousseau B., Fuchs A.H. (2002) Mol. Phys. 100:2109CrossRefGoogle Scholar
  40. 40.
    Schoen M., Diestler D.J., Cushman J.H. (1994) J. Chem. Phys. 100:7707CrossRefGoogle Scholar
  41. 41.
    Porcheron F., Rousseau B., Schoen M., Fuchs A.H. (2001) Phys. Chem. Chem. Phys. 3:1155CrossRefGoogle Scholar
  42. 42.
    Magda J.J., Tirrell M., Davis H.T. (1985) J. Chem. Phys. 83:1888CrossRefGoogle Scholar
  43. 43.
    Samuel J., Brinker C.J., Frink L.J.D., van Swol F. (1998) Langmuir 14:2602CrossRefGoogle Scholar
  44. 44.
    Ghatak C., Ayappa K.G. (2004) J. Chem. Phys. 120:9703CrossRefGoogle Scholar
  45. 45.
    Gao J.P., Luedtke W.D., Landman U. (1997) Phys. Rev. Lett. 79:705CrossRefGoogle Scholar
  46. 46.
    Bordarier P., Rousseau B., Fuchs A.H. (1997) J. Chem. Phys. 106:7295CrossRefGoogle Scholar
  47. 47.
    de Pablo L., Chavez M.L., Sum A.K., de Pablo J.J. (2004) J. Chem. Phys. 120:939CrossRefGoogle Scholar
  48. 48.
    Chavez M.D., de Pablo L., de Pablo J.J. (2004) Langmuir 20:10764CrossRefGoogle Scholar
  49. 49.
    D.N. Theodorou, in: Diffusion in Polymers, P. Neogied ed. (Marcel Dekker, Inc., New York, 1996) p. 67Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations