Advertisement

Tribology Letters

, 23:165 | Cite as

Reciprocating sliding behaviour of human skin in vivo at lower number of cycles

  • W. Li
  • S. X. Qu
  • Z. R. ZhouEmail author
Article

Abstract

Interfacial rub phenomena between human skin and other external surfaces is a prevalent problem in every day life. The improper skin friction would induce skin trauma. However, there are few publications on the friction mechanism of human skin and subsequent trauma to date. In this paper, the reciprocating friction testing of human volar forearm skin under different normal force and displacement amplitude have been performed. The normal force ranged from 0.1 to 12 N while the imposed displacement amplitude ranged from 2.5 to 17.5 mm. Tests lasting up to 1800 cycles with a frequency of 0.5 Hz were conducted. The tangential force (F t) was recorded as a function of the displacement (D) during each cycle of the whole testing. The results showed that there were three kinds of F t −D curve: the quasi-closed, elliptic and parallelepipedic cycle. A friction map comprising three friction regimes has been constituted according to the different kinds of F t −D curve. The concept of friction sensation was introduced to qualitatively describe the pain, drag and heat of the tested skin at the different friction regimes. The most discomfort sensation has been obtained at the friction regime from sticking to gross relative sliding regime.

Keywords

human skin reciprocating sliding friction sensation 

Notes

Acknowledgments

This work was supported by National Science Foundation of China (No. 50475110 and 50535050).

References

  1. 1.
    Zhou Z.R. (2004) Chinese J. Mech. Eng. 40 (5):7CrossRefGoogle Scholar
  2. 2.
    Raja K.S., Gabriel W., Norm V.G., et al (2003) Skin Res. Technol. 9:1CrossRefGoogle Scholar
  3. 3.
    Loden M. (1995) Acta Dermato-Venereolog 192:3Google Scholar
  4. 4.
    Zhang M., Mak A.F.T. (1999) Prosthet. Orthotics Int. 23:135Google Scholar
  5. 5.
    Zhang M., Turner-Smith A.R., Roberts V.C., Tanner A. (1996) Med. Eng. Phys. 18:207CrossRefGoogle Scholar
  6. 6.
    Loden M., Hakan O., Tony A., et al (1992) Br. J. Dermatol. 126:137CrossRefGoogle Scholar
  7. 7.
    Comaish S., Bottoms E. (1971) Br. J. Dermatol. 84:37CrossRefGoogle Scholar
  8. 8.
    Bhushan B., Wei G.H., Haddad P. (2005) Wear 259:1012CrossRefGoogle Scholar
  9. 9.
    Cua W., Wilhelm K.P., Maibach H.I. (1995) Skin Pharm. 8:246Google Scholar
  10. 10.
    Asserin J. (2000) Colloids and Surfaces B: Biointerfaces 19:1CrossRefGoogle Scholar
  11. 11.
    Elsner P., Dorothea W., Maibach H.I. (1990) Dermatology 181:88CrossRefGoogle Scholar
  12. 12.
    Anastssia B., Cua W., Maibach H.I. (1990) Br. J. Dermatol. 123:473Google Scholar
  13. 13.
    Raja K.S., Gabriel W., Norm V.G., et al (2003) Skin Res. Technol. 9:235CrossRefGoogle Scholar
  14. 14.
    A.A. Koudine, M. Barquins, P.H. Anthoine, L. Aubert and J.-L. Lévêque, Int. J. Cosmetic Sci. 22 (2000) 11Google Scholar
  15. 15.
    S.A. Johnson, D.M. Gorman, M.J. Adams and B.J. Briscoe, in: Proceedings of the 19th Leeds-Lyon Symposium on Tribology, eds. D. Dowson et al (Elsevier Science Publishers, B.V., Amsterdam) (1993) 663Google Scholar
  16. 16.
    Elkhyat A., Courderot-Masuyer C., Gharbi T., Humbert P. (2004) Skin Res. Technol. 10:215CrossRefGoogle Scholar
  17. 17.
    Elkhyat A., Agache P., Zahouani H., Humbert P.A. (2001) Int. J. Cosmetic Sci. 23:347CrossRefGoogle Scholar
  18. 18.
    Wong A.S.W., Li Y. (2004) J. Thermal Biol. 29 791.CrossRefGoogle Scholar
  19. 19.
    Olausson H., Wessberg J., Kakuda N. (2000) Brain Res. 866:178CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education)Southwest Jiaotong UniversityChengduChina

Personalised recommendations