Advertisement

Tribology Letters

, Volume 22, Issue 2, pp 143–149 | Cite as

Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application

  • J.-S. Kim
  • I.-H. Sung
  • Y.-T. Kim
  • E.-Y. Kwon
  • D.-E. KimEmail author
  • Y. H. Jang
Article

Abstract

The information on the frictional resistance of a self-propelled robotic capsule endoscope moving inside the body is very important for the design and the performance enhancement of such parameters of the capsule endoscope as power consumption, motion control and positioning accuracy. Based on this motivation, the ultimate goal of this research was to develop an analytical model that can predict the frictional resistance of the capsule endoscope moving inside the living body. In this work, experimental investigations of the fundamental frictional characteristics and the viscoelastic behaviors of the small intestine were performed by using custom-built testers and various capsule dummies. The small intestine of a pig was used for the experiments. Experimental results showed that the average frictional force was 10–50 mN and higher moving speed of the capsule dummy resulted in larger frictional resistance of the capsule. In addition, the friction coefficient did not change significantly with respect to the apparent area of contact between the capsule dummy and the intestine, and also the friction coefficients decreased with an increase in the normal load and varied from 0.08 to 0.2. Such frictional behaviors could be explained by the lubrication characteristics of the intestine surface and typical viscoelastic characteristics of the small intestine material. Also, based on the experimental results, a viscoelasticity model for the stress relaxation of the small intestine could be derived.

Keywords

biotribology capsule endoscope small intestine stress relaxation viscoelasticity 

Nomenclature

F

Friction force (N)

μ

Friction coefficient

N

Normal force applied to the capsule (N)

σ(t)

Stress applied to the small intestine (Pa, N/m2)

ε0

Strain applied to the small intestine

t

Time (s)

E1, E2, E3

Elastic modulus of spring (Pa, N/m2)

η1, η2

Viscosity of fluid in dashpot (Pa s)

Notes

Acknowledgments

This research has been supported by the Intelligent Microsystem Center (IMC; http://www.microsystem.re.kr), which carries out one of the 21st Century’s Frontier R&D Projects sponsored by the Korea Ministry of Commerce, Industry and Energy.

References

  1. 1.
    Howe R.D., Matsuoka Y. (1999) Annu. Rev. Biomed. Eng. 1: 211CrossRefGoogle Scholar
  2. 2.
    Iddan G., Meron G., Glukhovsky A., Swain P. (2000) Nature 405:417CrossRefGoogle Scholar
  3. 3.
    Fleischer D.E. (2002) Gastrointest. Endosc. 56: 452CrossRefGoogle Scholar
  4. 4.
    Peirs J., Reynaerts D., Van Brussel H. (2000) Sens. Actuator A-Phys. 85: 409CrossRefGoogle Scholar
  5. 5.
    Kim B., Lee S., Park J.H., Park J.O. (2005) IEEE-ASME Trans. Mechatron. 10: 77CrossRefGoogle Scholar
  6. 6.
    Dario P., Ciarletta P., Menciassi A., Kim B. (2004) Int. J. Robot. Res. 23: 549CrossRefGoogle Scholar
  7. 7.
    Meyer E., Overney R.M., Dransfeld K., Gyalog T. (1998) Nanoscience World Scientific Publishing Co., SingaporeGoogle Scholar
  8. 8.
    Baek N.K., Sung I.H., Kim D.E. (2004) Proc. Inst. Mech. Eng. Part H – J. Eng. Med. 218: 193CrossRefGoogle Scholar
  9. 9.
    Miller E.R., Ullrey D.E. (1987) Ann. Rev. Nutr. 7: 361CrossRefGoogle Scholar
  10. 10.
    Ravelingien A. (2005) Xenotransplantation 12: 235CrossRefGoogle Scholar
  11. 11.
    Martini F.H. (1995) Fundamentals of Anatomy & Physiology Prentice Hall, New JerseyGoogle Scholar
  12. 12.
    Marieb E. (1998) Human Anatomy & Physiology Menlo Park, CaliforniaGoogle Scholar
  13. 13.
    Fung Y.C. (1993) Biomechanics: Mechanical Properties of Living Tissues Springer-Verlag, New YorkGoogle Scholar
  14. 14.
    Anderson J., Li Z., Goubel F. (2002) J. Biomech. 35: 1315CrossRefGoogle Scholar
  15. 15.
    Lakes R.S. (1999) Viscoelastic Solids CRC Press, Boca Raton, FloridaGoogle Scholar
  16. 16.
    Pioletti D.P., Rakotomanana L.R. (2000) Eur. J. Mech. A-Solids 19: 749CrossRefGoogle Scholar
  17. 17.
    Flugge W. (1975) Viscoelasticity Springer-Verlag, BerlinGoogle Scholar
  18. 18.
    Findley W.N., Lai J.S. (1989) Creep and Relaxation of Nonlinear Viscoelastic Materials Dover Publications, New YorkGoogle Scholar
  19. 19.
    J.S. Kim, I.H. Sung, Y.T. Kim, D.E. Kim and Y.H. Jang, Med. Eng. Phys. (submitted)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • J.-S. Kim
    • 1
    • 3
  • I.-H. Sung
    • 1
    • 2
  • Y.-T. Kim
    • 1
  • E.-Y. Kwon
    • 1
  • D.-E. Kim
    • 1
    Email author
  • Y. H. Jang
    • 1
  1. 1.School of Mechanical EngineeringYonsei UniversitySeodaemoon-gu, SeoulKorea
  2. 2.Department of Mechanical EngineeringHannam UniversityDaedeok-gu, DaejeonKorea
  3. 3.Samsung Electro-Mechanics Co., Ltd.Yeongtong-Gu, SuwonKorea

Personalised recommendations