Tribology Letters

, Volume 21, Issue 3, pp 217–225 | Cite as

Molecular dynamics characterization of thin film viscosity for EHL simulation

  • A. MartiniEmail author
  • Y. Liu
  • R.Q. Snurr
  • Q. J. Wang

Molecular simulations were used to characterize changes in lubricant viscosity that may occur during thin film elastohydrodynamic lubrication (EHL). Molecular dynamics simulations were performed at variable wall speed and film thickness such that the effects of both parameters could be evaluated. Using this approach it was found that the viscosity of thin films under large shear is subject to both shear thinning and oscillation with film thickness. A composite model was developed that incorporated both effects. The expected impact that this model might have on an EHL interface was evaluated using a continuum simulation. An overall decrease in viscosity with some oscillation near the interface edges was predicted due to the molecularly modeled thin film effects.


nanotribology EHL with non-Newtonian lubricants viscosity 



The authors would like to express their sincere gratitude for the support of the US National Science Foundation IGERT Program, Office of Naval Research, and Department of Energy. This research was also supported in part by the National Science Foundation through TeraGrid resources provided by NCSA.


  1. 1.
    M.F. Abd-AlSamich, H. Rahnejat, (2001) Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 215: 1019CrossRefGoogle Scholar
  2. 2.
    S.T. Cui, P.T. Cummings, H.D. Cochran, (1999) J. Chem. Phys. 111: 1273CrossRefGoogle Scholar
  3. 3.
    Y.Z. Hu, S. Granick, (1998) Tribol. Lett. 5: 81CrossRefGoogle Scholar
  4. 4.
    S. Bair, (2001) Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 215:223CrossRefGoogle Scholar
  5. 5.
    L.I. Kioupis, E.J. Maginn, (2000) J. Phys. Chem. B 104: 7774CrossRefGoogle Scholar
  6. 6.
    C. McCabe, S. Cui, P.T. Cummings, P.A. Gordon, R.B. Saeger, (2001) J. Chem. Phys. 114: 1187CrossRefGoogle Scholar
  7. 7.
    G. Luengo, J. Isrealachvili, S. Granick, (1996) Wear 200: 328CrossRefGoogle Scholar
  8. 8.
    J.C. Wang, K.A. Fichthorn, (2002) Colloid. Surf. 206: 267CrossRefGoogle Scholar
  9. 9.
    Y.Z. Hu, H. Wang, Y. Gao, L.Q. Zheng, (1998) Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 216: 165CrossRefGoogle Scholar
  10. 10.
    Y.R. Jeng, C.C. Chen, S.H. Shyu, (2003) Tribol. Lett. 15: 293CrossRefGoogle Scholar
  11. 11.
    A.R. Leach, (2001). Molecular Modeling Principles and Applications 2 Prentice Hall, HarlowGoogle Scholar
  12. 12.
    M.D. Macedonia, E.J. Maginn, (1999) Mol. Phys. 96: 1375CrossRefGoogle Scholar
  13. 13.
    A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, (1999) J. Chem. Phys. 110: 2612CrossRefGoogle Scholar
  14. 14.
    A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, (2000) Phys. Rev. E 61: 690CrossRefGoogle Scholar
  15. 15.
    S.Y. Liem, D. Brown, J.H.R. Clarke, (1992) Phys. Rev. A 45: 3706CrossRefGoogle Scholar
  16. 16.
    R. Khare, J. dePablo, A. Yethiraj, (1996) Macromolecules 29: 7910CrossRefGoogle Scholar
  17. 17.
    M.P. Allen, D.J. Tildesley, (1987). Computer Simulation of Liquids Oxford University Press, OxfordGoogle Scholar
  18. 18.
    A. Gupta, S. Chempath, M.J. Sanborn, L.A. Clark, R.Q. Snurr, (2003) Mol. Simulat. 29: 29CrossRefGoogle Scholar
  19. 19.
    S. Chempath, J.F.M. Denayer, K.M.A. De Meyer, G.V. Baron, R.Q. Snurr, (2004) Langmuir 20: 150CrossRefGoogle Scholar
  20. 20.
    R. Balasundaram, S. Jiang, J. Belak, (1999) Chem. Eng. J 74: 117CrossRefGoogle Scholar
  21. 21.
    A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, (1998) J. Non-Newtonian Fluid Mech. 77: 53CrossRefGoogle Scholar
  22. 22.
    L. Zhang, R. Balasundaram, S.H. Gehrke, S. Jiang, (2001) J. Chem. Phys. 114: 6869CrossRefGoogle Scholar
  23. 23.
    G.W. Stachowiak, A.W. Batchelor, (2001). Engineering Tribology, 2 (Butterworth-Heinemann, BostonGoogle Scholar
  24. 24.
    B.D. Todd, D.J. Evans, P.J. Daivis, (1995) Phys. Rev. E 52: 1627CrossRefGoogle Scholar
  25. 25.
    F. Varnik, J. Baschnagel, K. Binder, (2000) J. Chem. Phys. 113: 4444CrossRefGoogle Scholar
  26. 26.
    P.A. Thompson, G.S. Grest, M.O. Robbins, (1992) Phys. Rev. Lett. 68: 3448CrossRefGoogle Scholar
  27. 27.
    H.W. Hu, G.A. Carson, S. Granick, (1991) Phys. Rev. Lett. 66: 2758CrossRefGoogle Scholar
  28. 28.
    M. Smeeth, H.A. Spikes, S. Gunsel, (1996) Tribol. Trans. 39: 720CrossRefGoogle Scholar
  29. 29.
    S. Granick, (1991) Science 253: 1374CrossRefGoogle Scholar
  30. 30.
    S. Bair, (2002) Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 216: 1CrossRefGoogle Scholar
  31. 31.
    S. Bair, C. McCabe, P.T. Cummings, (2002) Phys. Rev. Lett. 88: 58302CrossRefGoogle Scholar
  32. 32.
    A. Ponton, C. Schott, D. Quemada, (1998) Colloid. Surf. A: Physiochem. Eng. Aspect. 145: 37CrossRefGoogle Scholar
  33. 33.
    E.W. Lemmon, M.O. McLinden, D.G. Friend, (2005). Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  34. 34.
    H. Matsuoka, T. Kato, (1996) ASME J. Tribol. 118: 832CrossRefGoogle Scholar
  35. 35.
    R.G. Horn, J.N. Isrealachvili, (1981) J. Chem. Phys. 75: 1400CrossRefGoogle Scholar
  36. 36.
    Y.Z. Hu, D. Zhu, (2000) J. Tribol. 122: 1CrossRefGoogle Scholar
  37. 37.
    J.A. Greenwood, (2000) Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 214: 29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations