Advertisement

Tribology Letters

, Volume 20, Issue 1, pp 31–41 | Cite as

Activation of SiC Surfaces for Vapor Phase Lubrication by Chemical Vapor Deposition of Fe

  • D. Kim
  • D. Sung
  • A. J. GellmanEmail author
Article

Vapor phase lubrication (VPL) has been proposed as a method for lubrication of high temperature engines. During VPL, lubricants such as tricresylphosphate (TCP), (CH3–C6H4O)3P=O, are delivered through the vapor phase to high temperature engine parts and react on their surfaces to deposit a thin, solid, lubricating film. Although ceramics such as SiC are desirable materials for high temperature applications, their surfaces are unreactive for the decomposition of TCP and thus not amenable to VPL. As a means of activating the SiC surface for TCP decomposition we have used chemical vapor deposition of Fe from Fe(CO)5. Modification of the SiC surface with adsorbed Fe accelerates subsequent decomposition of TCP and deposition of P and C onto the surface. In the temperature range 500–800 K, m-TCP decomposes more readily on Fe-coated SiC surfaces than on SiC surfaces. The C and P deposition rates depend on the thickness of the Fe film and are further enhanced by oxidation of the Fe. This work provides a proof-of-concept demonstration of the feasibility of using VPL for ceramics

Key Words

vapor lubrication ceramics SiC tricresylphosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Makki, J.F., Graham, E.E. 1991Lubr. Eng.47199Google Scholar
  2. 2.
    Rao, A.M.N. 1996Lubr. Eng.52856Google Scholar
  3. 3.
    Treuren, K.W., Barlow, D.N., Heiser, W.H., Wagner, M.J., Forster, N.H. 1998J. Eng. Gas Turbines and Power120257Google Scholar
  4. 4.
    Makki, J.F., Graham, E.E. 1990Trib. Trans.33595Google Scholar
  5. 5.
    Groeneweg, M., Hakim, N., Barber, G.C., Klaus, E.E. 1991Lubr. Eng.471035Google Scholar
  6. 6.
    Graham, E.E., Nesarikar, A., Forster, N., Givan, G. 1993Lubr. Eng.49713Google Scholar
  7. 7.
    Forster, N.H., Trivedi, H.K. 1997Trib. Trans.40493Google Scholar
  8. 8.
    Forster, N.H. 1999Trib. Trans.421Google Scholar
  9. 9.
    Klaus, E.E., Jeng, G.S., Duda, J.L. 1989Lubr. Eng.45717Google Scholar
  10. 10.
    Hanyaloglu, B., Graham, E.E. 1994Lubr. Eng.50814Google Scholar
  11. 11.
    Forster, N.H., Trivedi, H.K. 1997Trib. Trans.40421Google Scholar
  12. 12.
    Lauer, J.L., Dwyer, S.R. 1991Trib. Trans.34521Google Scholar
  13. 13.
    Hanyaloglu, B., Fedor, D.C., Graham, E.E. 1995Lubr. Eng.51252Google Scholar
  14. 14.
    Klaus, E.E., Phillips, J., Lin, S.C., Wu, N.L., Duda, J.L. 1990Trib. Trans.3325Google Scholar
  15. 15.
    Hanyaloglu, B., Graham, E.E. 1992Trib. Trans.3577Google Scholar
  16. 16.
    Ren, D., Sung, D., Gellman, A.J. 2001Trib. Lett.10179CrossRefGoogle Scholar
  17. 17.
    Sung, D., Gellman, A.J. 2002Trib. Int.35579CrossRefGoogle Scholar
  18. 18.
    Stephenson, R.M., Malanowski, S. 1987Handbook of the Thermodynamics of Organic CompoundsElsevier Science Publishing Co., IncNew YorkGoogle Scholar
  19. 19.
    Chu, T.L., Campbell, R.B. 1965J. Electrochem. Soc.112955Google Scholar
  20. 20.
    Ramachandran, V., Brandy, M.F., Smith, A.R., Feenstra, R.M., Greve, D.W. 1998J. Appl. Phys.27308Google Scholar
  21. 21.
    Friessnegg, T., Boudreau, M., Mascher, P., Knights, A., Simpson, P.J., Puff, W. 1998J. Appl. Phys.84786CrossRefGoogle Scholar
  22. 22.
    Xue, Q.Z., Xue, Q.K., Hasegawa, Y., Tsong, I.S.T., Sakurai, T. 1999Appl. Phys. Lett.742468CrossRefGoogle Scholar
  23. 23.
    Sun, L., McCash, E.M. 1999Surf. Sci.42277CrossRefGoogle Scholar
  24. 24.
    Rocklein, M.N., Land, D.P. 1999Surf. Sci.436L702CrossRefGoogle Scholar
  25. 25.
    Jackman, R.B., Foord, J.S. 1989Surf. Sci.209151CrossRefGoogle Scholar
  26. 26.
    Davis, L.E.MacDonald, N.C.Palmberg, P.W.Riach, G.E.Weber, R.E. eds. 1976Handbook of Auger Electron Spectroscopy2Physical Electronics Industries Inc.MinnesotaGoogle Scholar
  27. 27.
    Sneh, O., Wise, M.L., Ott, A.W., Okada, L.A., George, S.M. 1995Surf. Sci.334135CrossRefGoogle Scholar
  28. 28.
    Somorjai, G.A. 1981Chemistry in Two Dimensions: SurfacesCornell University PressIthaca, NYGoogle Scholar
  29. 29.
    Powell, C.J., Jablonski, A. 1999J. Phys. Chem. Ref. Data2819Google Scholar
  30. 30.
    Powell, C.J., Jablonski, A. 2000Surf. Interface Anal.29108CrossRefGoogle Scholar
  31. 31.
    Adams, D.P., Mayer, T.M., Chason, E., Kellerman, B.K., Swartzentruber, B.S. 1995Phys. Rev. Lett.745088CrossRefPubMedGoogle Scholar
  32. 32.
    Adams, D.P., Mayer, T.M., Chason, E., Kellerman, B.K., Swartzentruber, B.S. 1997Surf. Sci.371445CrossRefGoogle Scholar
  33. 33.
    Kellerman, B.K., Chason, E., Adams, D.P., Mayer, T.M., White, J.M. 1997Surf. Sci.375331CrossRefGoogle Scholar
  34. 34.
    Foord, J.S., Jackman, R.B. 1984Chem. Phys. Lett.112190CrossRefGoogle Scholar
  35. 35.
    Thibaudau, F., Masson, L., Cheman, A., Roche, J.R., Salvan, F. 1998J. Vac. Sci. Technol. A162967CrossRefGoogle Scholar
  36. 36.
    Maschhoff, B.L., Armstrong, N.R. 1991Langmuir7693CrossRefGoogle Scholar
  37. 37.
    Vurens, G.H., Salmeron, M., Somorjai, G.A. 1988Surf. Sci.201129CrossRefGoogle Scholar
  38. 38.
    Jansson, C., Morgan, P. 1990Surf. Sci.23384CrossRefGoogle Scholar
  39. 39.
    Langell, M., Sormorjai, G.A. 1982J. Vac. Sci. Technol.21858CrossRefGoogle Scholar
  40. 40.
    Allendorf, M.D., Outka, D.A. 1991Surf. Sci.258177CrossRefGoogle Scholar
  41. 41.
    Goodman, D.W., Kelley, R.D., Madey, T.E., Yates, J.T.,Jr. 1980J. Catal.63226CrossRefGoogle Scholar
  42. 42.
    Houston, J.E., Peebles, D.E., Goodman, D.W. 1983J. Vac. Sci. Technol. A1995CrossRefGoogle Scholar
  43. 43.
    Saba, C.S., Forster, N.H. 2002Trib. Lett.12135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations