Tribology Letters

, Volume 19, Issue 2, pp 111–117

On the stiction of MEMS materials

Article

Abstract

Stiction is a serious problem in microelectromechanical systems (MEMS) due to their large surface area-to-volume ratio. Stiction is closely related to surface forces, which greatly depend on the materials used, surface topography and surface treatment process. In this paper, we investigate surface energies and stiction of commonly used MEMS materials by contact angle measurements and atomic force microscopy (AFM). Dispersive and polar components of surface energies are calculated by Owens–Wendt–Rabel–Kaelble method. Silicon and silicon-related materials have higher polar surface energies than SU-8 and poly-methylmethacrylate (PMMA), thereby have larger surface energies and enhanced tendency for stiction. The nano-scale adhesion forces between Si3N4 tip and surfaces obtained by AFM further verified that silicon wafer with native oxide has 3–4 times higher adhesion force than SU-8 and PMMA. It has been shown that the materials with higher surface energy have higher sticton/adhesion forces. The topography of surface influences the contact angle and stiction, and is also discussed in the paper.

Key words

stiction contact angle surface energy adhesion/stiction forces roughness MEMS materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tai-Ran Hus, MEMS & Microsystems: Design and Manufacture (McGraw-Hill Companies, Inc., New York, 2002)Google Scholar
  2. 2.
    Ruhmann, R., Pfeiffer, K., Falenski, M., Reuther, F., Engelke, R., Grutzner, G. 2002Mstnews145Google Scholar
  3. 3.
    Komvopoulos, K. 2003J. Adhesion Sci. Technol.17477CrossRefGoogle Scholar
  4. 4.
    Maboudian, R., Howe, R.T. 1997J. Vac. Sci. Technol.B 151Google Scholar
  5. 5.
    Adamson, A.W., Gast, A.P. 1997Physical Chemistry of Surfaces6John Wiley & Sons, IncNew YorkGoogle Scholar
  6. 6.
    Owens, D.K., Wendt, R.C. 1969J. Appl. Polym. Sci.131741CrossRefGoogle Scholar
  7. 7.
    Kaelble, D.H., Uy, K.C. 1970J. Adhes.250Google Scholar
  8. 8.
    Rabel, W. 1971Farbe Lack77997Google Scholar
  9. 9.
    SU-8 2005 from MicroChem CorpGoogle Scholar
  10. 10.
    Krüss GmBH DSA I software databaseGoogle Scholar
  11. 11.
    Bhushan, B. 1999Handbook of Micro/Nanotribology2Chemical Rebber CorpBoca Raton, FLGoogle Scholar
  12. 12.
    Juan, R., Bhushan, B. 1994ASME J. Trobol.116378Google Scholar
  13. 13.
    Y.X. Zhuang and A. Menon, J. Vac. Sci. Technol. A 23 (2005) 434Google Scholar
  14. 14.
    Ayon, A.A., Chen, D.-Z., Khanna, R., Braff, R., Sawin, H.H., Schmidt, M.A. 2000Mat. Res. Sco. Symp. Proc.605141Google Scholar
  15. 15.
    Wenzel, R.N. 1936Ind. Eng. Chem.28988CrossRefGoogle Scholar
  16. 16.
    Cassie, A.B., Baxter, S. 1944Trans. Faraday Soc.40546CrossRefGoogle Scholar
  17. 17.
    Komvopoulos, K. 1996Wear200305CrossRefGoogle Scholar
  18. 18.
    R.K. Alley, P. Mai, K. Komvopoulos and R.T. Howe, Proceedings of the Seventh International Conference on Solid-state Sensors and Actuators, Transducer’93, Yokohama, Japan, Vol. 288, pp. 7--10Google Scholar
  19. 19.
    Ren, S., Yang, S., Zhao, Y., Yu, T., Xiao, X. 2003Surf. Sci.54664CrossRefGoogle Scholar
  20. 20.
    Yoon, E.S., Yang, S.H., Kong, H., Kim, K.H. 2003Tribol. Lett.13145CrossRefGoogle Scholar
  21. 21.
    Shibuichi, S., Onda, T., Satoh, N., Tsujii, K. 1996J. Phys. Chem.10019512CrossRefGoogle Scholar
  22. 22.
    Bico, J., Marzoln, C., Quéré, D. 1999Europhys. Lett.47220CrossRefGoogle Scholar
  23. 23.
    Nilsson, D., Jensen, S., Menon, A. 2003J. Micromech. Microeng.13S57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.MIC, Department of Micro and NanotechnologyTechnical University of DenmarkKgsDenmark

Personalised recommendations