Tribology Letters

, Volume 19, Issue 1, pp 37–48 | Cite as

Multiscale roughness and modeling of MEMS interfaces

  • C.K. Bora
  • E.E. Flater
  • M.D. Street
  • J.M. Redmond
  • M.J. Starr
  • R.W. Carpick
  • M.E. Plesha

Investigation of contact and friction at multiple length scales is necessary for the design of surfaces in sliding microelectromechanical system (MEMS). A method is developed to investigate the geometry of summits at different length scales. Analysis of density, height, and curvature of summits on atomic force microscopy (AFM) images of actual silicon MEMS surfaces shows that these properties have a power law relationship with the sampling size used to define a summit, and no well-defined value for any is found, even at the smallest experimentally accessible length scale. This behavior and its similarity to results for fractal Weierstrass-Mandelbrot (W-M) function approximations indicate that a multiscale model is required to properly describe these surfaces. A multiscale contact model is developed to describe the behavior of asperities at different discrete length scales using an elastic single asperity contact description. The contact behavior is shown to be independent of the scaling constant when asperity heights and radii are scaled correctly in the model.


multiscale fractal roughness surface summit asperity modeling MEMS AFM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpick, R.W., Salmeron, M. 1997Chem. Rev971163CrossRefPubMedGoogle Scholar
  2. 2.
    Greenwood , J.A., Williamson, J.B.P. 1966Proc. Roy. Soc. London A495300Google Scholar
  3. 3.
    Zhuravlev , V.A., Zh. Tekh, Fiz. 1940J. Technical Phys.– translated from Russian by F.M. Borodich101447Google Scholar
  4. 4.
    McCool, J.I. 1986Wear10737CrossRefGoogle Scholar
  5. 5.
    Sayles, R.S., Thomas, T.R. 1978Nature271431Google Scholar
  6. 6.
    Archard, J.F. 1957Proc. Roy. Soc. London A243190Google Scholar
  7. 7.
    Greenwood, J.A., Wu , J.J. 2001Meccanica36617CrossRefGoogle Scholar
  8. 8.
    Majumdar, A., Bhushan, B. 1990J. Tribol112205Google Scholar
  9. 9.
    Mandelbrot, B.B. 1982The Fractal Geometry of NatureW.H. FreemanNew YorkGoogle Scholar
  10. 10.
    Falconer, K.J. 1990Fractal Geometry: Mathematical Foundations and ApplicationsWileyNew YorkGoogle Scholar
  11. 11.
    Berry, M.V., Lewis, Z.V. 1980Proc. Roy. Soc. London A370459Google Scholar
  12. 12.
    Garcia, E., Sniegowski, J. 1995Sens. Actuators A48203Google Scholar
  13. 13.
    Ausloos, M., Berman, D.H. 1985Proc. Roy. Soc. London A400331Google Scholar
  14. 14.
    Yan, W., Komvopoulos, K. 1998J. Appl. Phys843617Google Scholar
  15. 15.
    Majumdar, A., Bhushan, B. 1991J. Tribol1131Google Scholar
  16. 16.
    Wu, J.J. 2000Wear23936Google Scholar
  17. 17.
    Hertz, H., Reine, J. 1881Angew. Math92156Google Scholar
  18. 18.
    R.W. Carpick, E.E. Flater, J.R. VanLangendon, M.P. de Boer, Proc. of the SEM VIII International Congress and Exposition on Experimental and Applied Mechanics, (2002) 282.Google Scholar
  19. 19.
    Johnson, K.L., Kendall, K., Roberts, A.D. 1971Proc. Roy. Soc. London A324301Google Scholar
  20. 20.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P., Colloid, J. 1975Interface Sci53314Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C.K. Bora
    • 1
  • E.E. Flater
    • 1
  • M.D. Street
    • 1
  • J.M. Redmond
    • 2
  • M.J. Starr
    • 2
  • R.W. Carpick
    • 1
  • M.E. Plesha
    • 1
  1. 1.Dept. of Engr. PhysicsUniversity of Wisconsin–MadisonMadisonUSA
  2. 2.Sandia National LaboratoriesStructural Dynamics ResearchAlbuquerqueUSA

Personalised recommendations