Tribology Letters

, Volume 18, Issue 4, pp 499–504 | Cite as

Friction coefficient of soft contact lenses: measurements and modeling

  • A. C. Rennie
  • P. L. Dickrell
  • W. G. Sawyer

Tribological conditions for contact lenses have very low contact pressures in the range 3–5 kPa and sliding speeds around 12 cm/s. Using a microtribometer a series of experiments was run on commercially available contact lenses made from Etafilcon-A. These tests were run using 10–50 mN of normal load at speeds from 63 to 6280 μm/s using a 1-mm radius glass sphere as a pin. The resulting contact pressures are believed to be nearly an order of magnitude larger than the targeted 3–5 kPa. It is hypothesized that the viscoelastic nature of the hydrogel, viscous shearing of the packaging solution, and interfacial shear between the glass sphere and the contact lens all contribute to the friction forces. A model that includes all three of these contributors is developed and compared to the experimental data. The experimental friction coefficients vary from μ = 0.025 to 0.075. The calculated fluid film␣thicknesses were between 1 and 30 nm. The average surface roughness of the lens and the glass sphere are Ra=15 nm and Ra=8 nm, respectively, suggesting that the contact is not in full elastohydrodynamic lubrication. Finally, the largest contributors to the friction force in these experiments were found to be viscous dissipation within the hydrogel and interfacial shear within the contact zone.

Key words

contact lens hydrogel friction microtribology microtribometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, D.K., Holden, B.A. 1986Phys. Med. Biol.31635Google Scholar
  2. 2.
    McCutchen, C.W. 1962Wear51Google Scholar
  3. 3.
    J.A. Nairn and T. Jiangizaire (1995), ANTEC ’95 3384Google Scholar
  4. 4.
    Freeman, M.E., Furey, M.J., Love, B.J., Hampton, J.M. 2000Wear241129Google Scholar
  5. 5.
    Hung, G., Hsu, F., Stark, L. 1977Am. J. Optometr. Physiol. Optics54678Google Scholar
  6. 6.
    Pascovici, M.D., Cicone, T. 2003Tribol. Int.36791Google Scholar
  7. 7.
    Liu, H.W., Bhushan, B. 2003J. Vacuum Sci. Technol. A211528Google Scholar
  8. 8.
    Willcox, M. D.P., Harmis, N., Cowell, B.A., Williams, T., Holden, B.A. 2001Biomaterials223235Google Scholar
  9. 9.
    Podra, P., Andersson, S. 1997Wear20779Google Scholar
  10. 10.
    J. Halling, T.L. Whomes, P.B. Davies and R.D. Arnell, Tribology: Principles and Design Applications (Springer Verlag, 1993).Google Scholar
  11. 11.
    Hamrock, B.J., Dowson, D. 1978J. Lubricat. Technol.—Trans. Asme100236Google Scholar
  12. 12.
    Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A. 2002Biomaterials231657Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. C. Rennie
    • 1
  • P. L. Dickrell
    • 1
  • W. G. Sawyer
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations