Tribology Letters

, Volume 17, Issue 4, pp 967–976 | Cite as

Deterministic Friction Model of a Rough Surface Sliding Against a Flat Layered Surface

  • H.R. Pasaribu
  • D.J. Schipper


In this paper, a layered surface is modeled like a solid that has effective mechanical properties (Eeff(ω), νeff(ω) and Heff(ω)) as a function of indentation depth (ω) and the rough surface is modeled as a population of spherically shaped asperities with different radii and heights (not necessarily Gaussian distributed). The contact behavior and the resistant to motion experienced by each asperity is analyzed locally and summarized as the total friction force based on the adhesion and ploughing mechanisms. The present model extends the capability of Halling's model to predict friction of layered surfaces. With this model, one is able to predict the friction of soft layer on a hard substrate and hard layer on a soft substrate in contact with a rough counter surface.

friction model layered surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. P. Bowden and D. Tabor, Friction and Lubrication of Solids, Part. I (Clarendon Press, 1950).Google Scholar
  2. [2]
    J. Halling, ASLE Transaction 24(4) 528.Google Scholar
  3. [3]
    H. R. Pasaribu and D. J. Schipper, Deterministic contact model of a rough surface against a flat layered surface, Proceeding of 2004 ASME/STLE Joint Tribology Conference 2004, TRIB2004-64014.Google Scholar
  4. [4]
    M. V. Swain and J. Mencik, Thin Solid Films 253 (1994) 204.Google Scholar
  5. [5]
    H. Gao, C. Chui and J. Lee, 29 (1992) 2471.Google Scholar
  6. [6]
    A. K. Bhattacharaya and W. D. Nix, Int. J. Solids Struct. 24 (1988) 1287.Google Scholar
  7. [7]
    D. Tabor, The Hardness of Metals (Oxford University Press, 1951).Google Scholar
  8. [8]
    Y. Zhao, D. M. Maietta and L. Chang, ASME J. Tribol. 122 (2000) 86.Google Scholar
  9. [9]
    M. G. D. El-Sherbiney, Tribological Properties of Ion-plated Thinmetallic Films, Ph. D. thesis, (University of Salford, England, 1975).Google Scholar
  10. [10]
    K. Komvopoulos, N. Saka and N. P. Suh, J. Tribol. 107 (1985) 452.Google Scholar
  11. [11]
    K. L. Johnson, Contact mechanics (Cambridge University Press, Cambridge, 1985).Google Scholar
  12. [12]
    D. F. Wang and K. Kato, Wear 252 (2002) 210.Google Scholar
  13. [13]
    G. J. Kovacs, G. Safran, O. Geszti, T. Ujvari, I. Berboti and G. Radnoczi, Surf. Coat. Tech. (2003).Google Scholar
  14. [14]
    P. Heilmann and D. A. Rigney, Wear 72 (1981) 195.Google Scholar
  15. [15]
    J. Halling and R. D. Arnell, Wear 100 (1984) 367.Google Scholar
  16. [16]
    J. A. Greenwood and J. B. P. Williamson, Contact of nominally flat sufaces, Proc. R. Soc. London, Ser. A. 295 (1966) 300.Google Scholar
  17. [17]
    K. A. Blancoe and J. A. Williams, Wear 203–204 (1997) 722.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • H.R. Pasaribu
    • 1
  • D.J. Schipper
    • 1
  1. 1.Faculty of Engineering Technology, Laboratory for Surface Technology and TribologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations