Advertisement

Tribology Letters

, Volume 17, Issue 4, pp 751–756 | Cite as

A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings

  • G. Gassner
  • P.H. Mayrhofer
  • K. Kutschej
  • C. Mitterer
  • M. Kathrein
Article

Abstract

The binary system of vanadium and nitrogen offers promising phases in order to enhance the tribological properties of common hard coatings, owing to their ability to form lubricious oxides, often also referred to as Magnéli phases, at elevated temperatures. The aim of this work is to characterize VN coatings prepared by reactive unbalanced magnetron sputtering, and to verify the new concept of solid/liquid oxide lubrication. Oxidation of the coatings and possible melting of the oxides were investigated by dynamic Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) up to 900 °C in air. On heating the coating samples, exothermal reactions appeared during the DSC measurements indicating oxidation in the temperature range of 500–650 °C. Subsequently, endothermal melting reactions were observed between 650 and 850 °C. To investigate the effect of oxide formation and melting, dry sliding experiments against alumina and austenitic stainless steel balls were performed using a ball-on-disc tribometer in the temperature range between 25 °C and 700 °C. For all coatings evaluated, a significant decrease of the friction coefficient at temperatures above 500 °C was observed compared to room temperature. Additionally, oxide phases were identified by X-ray Diffraction (XRD) after DSC and tribometer testing. Finally, it can be concluded that the lubricious oxide concept should strongly contribute to the reduction of friction for future machining applications.

magnéli lubrication differential scanning calorimetry dry sliding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. PalDey and S. C. Deevi, Mat. Sci. Eng. A 342 (2003) 58.Google Scholar
  2. [2]
    S. Hogmark, S. Jacobson and M. Larsson, Wear 246 (2000) 20.Google Scholar
  3. [3]
    H. A. Jehn, Surf. Coat. Technol. 131 (2000) 433.Google Scholar
  4. [4]
    V. Derflinger, H. Bra¨ ndle and H. Zimmermann, Surf. Coat. Technol. 113 (1999) 286.Google Scholar
  5. [5]
    C. Mitterer, F. Holler, F. U¨ stel and D. Heim, Surf. Coat. Technol. 125 (2000) 233.Google Scholar
  6. [6]
    D. G. Teer, Wear 251 (2001) 1068.Google Scholar
  7. [7]
    J. M. Carrapichano, J. R. Gomes and R. F. Silva, Wear 253 (2002) 1070.Google Scholar
  8. [8]
    B. Navinsek, P. Panjan, M. Cekada and D. T. Quinto, Surf. Coat. Technol. 154 (2002) 194.Google Scholar
  9. [9]
    M. Stoiber, E. Badisch, C. Lugmair and C. Mitterer, Surf. Coat. Technol. 163–164 (2003) 451.Google Scholar
  10. [10]
    K. Holmberg and A. Matthews, Coatings Tribology—Properties, Techniques and Applications in Surface Engineering. Elsevier Tribology Series 28 (Elsevier, Amsterdam, 1994).Google Scholar
  11. [11]
    O. Storz, H. Gasthuber and M. Woydt, Suf. Coat. Technol. 140 (2001) 76.Google Scholar
  12. [12]
    A. Magne´li, Acta Crystallogr. 6 (1953) 495.Google Scholar
  13. [13]
    E. Lugscheider, S. Ba¨ rwulf and C. Barimani, Surf. Coat. Technol. 120–121 (1999) 458.Google Scholar
  14. [14]
    A. Erdemir, Tribol. Lett. 8 (2000), 97Google Scholar
  15. [15]
    M. Woydt, A. Skopp, I. Do¨ rfel and K. Witke, Wear 218 (1998) 84.Google Scholar
  16. [16]
    P. H. Mayrhofer, P. E. Hovsepian, C. Mitterer and W.-D. Mu¨ nz, Surf. Coat. Technol. 177–178 (2004) 341.Google Scholar
  17. [17]
    P. Losbichler and C. Mitterer, Surf. Coat. Technol. 97 (1997) 568.Google Scholar
  18. [18]
    P. Losbichler, C. Mitterer, P. N. Gibson, W. Gissler, F. Hofer and P. Warbichler, Surf. Coat. Technol. 94/95 (1997) 297.Google Scholar
  19. [19]
    A. Brenner and S. Senderoff, J. Res. 42(2) (1949) 105.Google Scholar
  20. [20]
    J. D. Wilcock, and D. S. Campbell, Thin Solid Films 3 (1969) 3.Google Scholar
  21. [21]
    P. H. Mayrhofer and C. Mitterer, Surf. Coat. Technol. 133–134 (2000) 131.Google Scholar
  22. [22]
    B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, Massachusetts, 1967).Google Scholar
  23. [23]
    E. Badisch, C. Mitterer, P. H. Mayrhofer, G. Mori, R. J. Bakker, J. Brenner and H. Sto¨ ri, Thin Solid Films, 460 (2004) 125.Google Scholar
  24. [24]
    E. Badisch, G. A. Fontalvo, M. Stoiber and C. Mitterer, Surf. Coat, Technol. 163–164 (2003) 585.Google Scholar
  25. [25]
    E. Badisch and C. Mitterer, in: Proc. 10th Nordic Symposium on Tribology, KTH, Stockholm, 2002Google Scholar
  26. [26]
    P. H. Mayrhofer, G. Tischler and C. Mitterer, Surf. Coat. Technol. 142–144 (2001) 78.Google Scholar
  27. [27]
    W. Gulbinski, T. Suszko, W. Sienicki and B. Warcholinski, Wear 254 (2003) 129.Google Scholar
  28. [28]
    N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Butterworth-Heinemann, Oxford, 1997).Google Scholar
  29. [29]
    Y. Ningyi, L. Jinuha and L. Chenglu, App. Surf. Sci. 191 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • G. Gassner
    • 1
  • P.H. Mayrhofer
    • 2
  • K. Kutschej
    • 1
  • C. Mitterer
    • 2
  • M. Kathrein
    • 3
  1. 1.Materials Center LeobenLeobenAustria
  2. 2.Department of Physical Metallurgy and Materials TestingUniversity of LeobenLeobenAustria
  3. 3.CERATIZIT AGReutteAustria

Personalised recommendations