Advertisement

Transgenic Research

, Volume 28, Issue 1, pp 51–76 | Cite as

Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products

  • Caitlin A. CooperEmail author
  • Mark L. Tizard
  • Tamsyn Stanborough
  • Sean C. Moore
  • P. Scott Chandry
  • Kristie A. Jenkins
  • Terry G. Wise
  • Terri E. O’Neil
  • Daniel S. Layton
  • Kirsten R. Morris
  • Robert J. Moore
  • Narelle Fegan
  • Timothy J. Doran
Original Paper
  • 140 Downloads

Abstract

Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.

Keywords

Transgenic Overexpression Pathogens Poultry Antimicrobials Bacteria 

Notes

Acknowledgements

The authors would like to acknowledge Noel Collins, Chris Darcy, Barry Bellin, and Susanne Wilson for their assistance with animal care and handling. They would also like to thank Marie Collier, Edward Fox, James Murray, and Mark Ford for help carrying out experiments. This work was supported by the CSIRO Health and Biosecurity and Agriculture and Food business units as part of a CSIRO Office of the Chief Executive postdoctoral fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11248_2018_101_MOESM1_ESM.pdf (87 kb)
Supplementary material 1 (PDF 87 kb)
11248_2018_101_MOESM2_ESM.pdf (110 kb)
Supplementary material 2 (PDF 109 kb)
11248_2018_101_MOESM3_ESM.pdf (141 kb)
Supplementary material 3 (PDF 141 kb)
11248_2018_101_MOESM4_ESM.pdf (314 kb)
Supplementary material 4 (PDF 314 kb)

References

  1. Adams NR, Briegel JR, Ward KA (2002) The impact of a transgene for ovine growth hormone on the performance of two breeds of sheep. J Anim Sci 80:2325–2333Google Scholar
  2. Aguilera O, Quiros LM, Fierro JF (2003) Transferrins selectively cause ion efflux through bacterial and artificial membranes. FEBS Lett 548:5–10Google Scholar
  3. Anastasiadou M, Avdi M, Michailidis G (2013) Expression of avian β-defensins and Toll-like receptor genes in the rooster epididymis during growth and Salmonella infection. Anim Reprod Sci 140:224–231Google Scholar
  4. Baron F, Gautier M, Brulé G (1999) Rapid growth of Salmonella enteritidis in egg white reconstituted from industrial egg white powder. J Food Prot 62:585–591Google Scholar
  5. Baron F, Jan S, Gonnet F, Pasco M, Jardin J, Giudici B, Gautier M, Guérin-Dubiard C, Nau F (2014) Ovotransferrin plays a major role in the strong bactericidal effect of egg white against the Bacillus cereus group. J Food Prot 77:955–962Google Scholar
  6. Batz MB, Hoffmann S, Morris JG Jr (2012) Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot 75:1278–1291Google Scholar
  7. Beaumont C, Protais J, Pitel F, Leveque G, Malo D, Lantier F, Plisson-Petit F, Colin P, Protais M, Le Roy P, Elsen JM, Milan D, Lantier I, Neau A, Salvat G, Vignal A (2003) Effect of two candidate genes on the Salmonella carrier state in fowl. Poult Sci 82:721–726Google Scholar
  8. Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398Google Scholar
  9. Braukmann M, Barrow PA, Berndt A, Methner U (2016) Combination of competitive exclusion and immunisation with a live Salmonella vaccine in newly hatched chickens: immunological and microbiological effects. Res Vet Sci 107:34–41Google Scholar
  10. Bródka K, Kozajda A, Buczyńska A, Szadkowska-Stańczyk I (2012) The variability of bacterial aerosol in poultry houses depending on selected factors. Int J Occup Med Environ Health 25:281–293Google Scholar
  11. Calenge F, Lecerf F, Demars J, Feve K, Vignoles F, Pitel F, Vignal A, Velge P, Sellier N, Beaumont C (2009) QTL for resistance to Salmonella carrier state confirmed in both experimental and commercial chicken lines. Anim Genet 40:590–597Google Scholar
  12. Calenge F, Vignal A, Demars J, Fève K, Menanteau P, Velge P, Beaumont C (2011) New QTL for resistance to Salmonella carrier-state identified on fowl microchromosomes. Mol Genet Genomics 285:237–243Google Scholar
  13. Capita R, Álvarez-Fernández E, Fernández-Buelta E, Manteca J, Alonso-Calleja C (2013) Decontamination treatments can increase the prevalence of resistance to antibiotics of Escherichia coli naturally present on poultry. Food Microbiol 34:112–117Google Scholar
  14. Cerisuelo A, Marín C, Sánchez-Vizcaíno F, Gómez EA, de la Fuente JM, Durán R, Fernández C (2014) The impact of a specific blend of essential oil components and sodium butyrate in feed on growth performance and Salmonella counts in experimentally challenged broilers. Poult Sci 93:599–606Google Scholar
  15. Chaussé AM, Grépinet O, Bottreau E, Le Vern Y, Menanteau P, Trotereau J, Robert V, Wu Z, Kerboeuf D, Beaumont C, Velge P (2011) Expression of Toll-like receptor 4 and downstream effectors in selected cecal cell subpopulations of chicks resistant or susceptible to Salmonella carrier state. Infect Immun 79:3445–3454Google Scholar
  16. Chaussé AM, Grépinet O, Bottreau E, Robert V, Hennequet-Antier C, Lalmanach AC, Lecardonnel J, Beaumont C, Velge P (2014) Susceptibility to Salmonella carrier-state: a possible Th2 response in susceptible chicks. Vet Immunol Immunopathol 159:16–28Google Scholar
  17. Chen X, Yang Y, Shi Z, Gao MQ, Zhang Y (2016) Effects of genetically modified milk containing human beta-defensin-3 on gastrointestinal health of mice. PLoS ONE 11:e0159700Google Scholar
  18. Chen X, Gao MQ, Liang D, Yin S, Yao K, Zhang Y (2017) Safety assessment of genetically modified milk containing human beta-defensin-3 on rats by a 90-day feeding study. Food Chem Toxicol 100:34–41Google Scholar
  19. Cooper C, Moore SC, Moore RJ, Chandry PS, Fegan N (2018) Salmonella enterica subsp. salamae serovar Sofia, a prevalent serovar in Australian broiler chickens, is also capable of transient colonization in layers. Br Poult Sci 14:1–8Google Scholar
  20. Crespo R, Garner MM, Hopkins SG, Shah DH (2013) Outbreak of Listeria monocytogenes in an urban poultry flock. BMC Vet Res 9:204Google Scholar
  21. Das SC, Isobe N, Yoshimura Y (2011) Expression of Toll-like receptors and avian β-defensins and their changes in response to bacterial components in chicken sperm. Poult Sci 90:417–425Google Scholar
  22. Dheilly A, Bouder A, Le Devendec L, Hellard G, Kempf I (2011) Clinical and microbial efficacy of antimicrobial treatments of experimental avian colibacillosis. Vet Microbiol 149:422–429Google Scholar
  23. Dierich A, Gaub MP, LePennec JP, Astinotti D, Chambon P (1987) Cell-specificity of the chicken ovalbumin and conalbumin promoters. EMBO J 6:2305–2312Google Scholar
  24. Ebers KL, Zhang CY, Zhang MZ, Bailey RH, Zhang S (2009) Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis. BMC Microbiol 9:153Google Scholar
  25. Fagbamila IO, Barco L, Mancin M, Kwaga J, Ngulukun SS, Zavagnin P, Lettini AA, Lorenzetto M, Abdu PA, Kabir J, Umoh J, Ricci A, Muhammad M (2017) Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE 12:e0173097Google Scholar
  26. Federica Giardi M, La Torre C, Giansanti F, Botti D (2009) Effects of transferrins and cytokines on nitric oxide production by an avian lymphoblastoid cell line infected with Marek’s disease virus. Antiviral Res 81:248–252Google Scholar
  27. FAOSTAT database http://faostat.fao.org/site/368/default.aspx#ancor. Accessed 14 Mar 2018
  28. Fleming DW, Cochi SL, MacDonald KL, Brondum J, Hayes PS, Plikaytis BD, Holmes MB, Audurier A, Broome CV, Reingold AL (1985) Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med 312:404–407Google Scholar
  29. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF (2007) Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci USA 104:18631–18635Google Scholar
  30. Fung DYC (2009) Spoilage, preservation and quality control. In: Schaechter M (ed) Encyclopedia of microbiology, vol 6. Academic press, Amsterdam, pp 54–79Google Scholar
  31. Gao Q, Reynolds GE, Innes L, Pedram M, Jones E, Junabi M, Gao DW, Ricoul M, Sabatier L, Van Brocklin H, Franc BL, Murnane JP (2007) Telomeric transgenes are silenced in adult mouse tissues and embryo fibroblasts but are expressed in embryonic stem cells. Stem Cells 25:3085–3092Google Scholar
  32. Gao CY, Xu TT, Zhao QJ, Li CL (2015) Codon optimization enhances the expression of porcine β-defensin-2 in Escherichia coli. Genet Mol Res 14:4978–4988Google Scholar
  33. Gast RK, Benson ST (1995) The comparative virulence for chicks of Salmonella enteritidis phage type 4 isolates and isolates of phage types commonly found in poultry in the United States. Avian Dis 39:567–574Google Scholar
  34. Gervasi T, Lo Curto R, Minniti E, Narbad A, Mayer MJ (2014) Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens. Lett Appl Microbiol 59:355–361Google Scholar
  35. Giansanti F, Rossi P, Massucci MT, Botti D, Antonini G, Valenti P, Seganti L (2002) Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defensive activities of lactoferrin Biochem. Cell Biol 80:125–130Google Scholar
  36. Goh SG, Kuan CH, Loo YY, Chang WS, Lye YL, Soopna P, Tang JY, Nakaguchi Y, Nishibuchi M, Afsah-Hejri L, Son R (2012) Listeria monocytogenes in retailed raw chicken meat in Malaysia. Poult Sci 91:2686–2690Google Scholar
  37. Gormley FJ, Little CL, Rawal N, Gillespie IA, Lebaigue S, Adak GK (2011) A 17-year review of foodborne outbreaks: describing the continuing decline in England and Wales (1992-2008). Epidemiol Infect 139:688–699Google Scholar
  38. Guha-Thakurta P, Choudhury D, Dasgupta R, Dattagupta JK (2003) Structure of diferric hen serum transferrin at 2.8 A resolution. Acta Crystallogr D Biol Crystallogr 59:1773–1781Google Scholar
  39. Guyard-Nicodème M, Keita A, Quesne S, Amelot M, Poezevara T, Le Berre B, Sánchez J, Vesseur P, Martín Á, Medel P, Chemaly M (2016) Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult Sci 95:298–305Google Scholar
  40. Hansson I, Nyman A, Lahti E, Gustafsson P, Olsson Engvall E (2015) Associations between Campylobacter levels on chicken skin, underlying muscle, caecum and packaged fillets. Food Microbiol 48:178–181Google Scholar
  41. Hasenstein JR, Lamont SJ (2007) Chicken gallinacin gene cluster associated with Salmonella response in advanced intercross line. Avian Dis 51:561–567Google Scholar
  42. Hatew B, Delessa T, Zakin V, Gollop N (2011) Antagonistic intestinal microflora produces antimicrobial substance inhibitory to Pseudomonas species and other spoilage organisms. J Food Sci 76:522–530Google Scholar
  43. Hertel SC, Chwieralski CE, Hinz M, Rio MC, Tomasetto C, Hoffmann W (2004) Profiling trefoil factor family (TFF) expression in the mouse: identification of an antisense TFF1-related transcript in the kidney and liver. Peptides 25:755–762Google Scholar
  44. Hirota Y, Yang MP, Araki S, Yoshihara K, Furusawa S, Yasuda M, Mohamed A, Matsumoto Y, Onodera T (1995) Enhancing effects of chicken egg white derivatives on the phagocytic response in the dog. J Vet Med Sci 57:825–829Google Scholar
  45. Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM (2002) Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult Sci 81:1486–1491Google Scholar
  46. Jeltsch JM, Chambon P (1982) The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur J Biochem 122:291–295Google Scholar
  47. Jin G, Kawsar HI, Hirsch SA, Zeng C, Jia X, Feng Z, Ghosh SK, Zheng QY, Zhou A, McIntyre TM, Weinberg A (2010) An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS ONE 5:e10993Google Scholar
  48. Jin L, Wang Y, Xu N, Wang D, Liu X, Peng R, Jiang C, Li X (2018) Expression and activity analysis of β gallinacin-3 in Arabidopsis. Protein Expr Purif 144:1–4Google Scholar
  49. Judge CJ, Reyes-Aviles E, Conry SJ, Sieg SS, Feng Z, Weinberg A, Anthony DD (2015) HBD-3 induces NK cell activation, IFN-γ secretion and mDC dependent cytolytic function. Cell Immunol 297:61–68Google Scholar
  50. June Byun S, Yuk SS, Jang YJ, Choi H, Jeon MH, Erdene-Ochir TO, Kwon JH, Noh JY, Sun Kim J, Gyu Yoo J, Song CS (2017) Transgenic chickens expressing the 3D8 single chain variable fragment protein suppress avian influenza transmission. Sci Rep 7:5938Google Scholar
  51. Kang H, Loui C, Clavijo RI, Riley LW, Lu S (2006) Survival characteristics of Salmonella enterica serovar Enteritidis in chicken egg albumen. Epidemiol Infect 134:967–976Google Scholar
  52. Kaufmann SH, Ladel CH (1994) Role of T cell subsets in immunity against intracellular bacteria: experimental infections of knock-out mice with Listeria monocytogenes and Mycobacterium bovis BCG. Immunobiology 191:509–519Google Scholar
  53. Kleta S, Hammerl JA, Dieckmann R, Malorny B, Borowiak M, Halbedel S, Prager R, Trost E, Flieger A, Wilking H, Vygen-Bonnet S, Busch U, Messelhäußer U, Horlacher S, Schönberger K, Lohr D, Aichinger E, Luber P, Hensel A, Al Dahouk S (2017) Molecular tracing to find source of protracted invasive listeriosis outbreak, Southern Germany, 2012-2016. Emerg Infect Dis 23:1680–1683Google Scholar
  54. Ko KY, Mendonca AF, Ahn DU (2008) Effect of ethylenediaminetetraacetate and lysozyme on the antimicrobial activity of ovotransferrin against Listeria monocytogenes. Poult Sci 87:1649–1658Google Scholar
  55. Ko KY, Mendoncam AF, Ismail H, Ahn DU (2009) Ethylenediaminetetraacetate and lysozyme improves antimicrobial activities of ovotransferrin against Escherichia coli O157:H7. Poult Sci 88:406–414Google Scholar
  56. Koppenol A, Everaert N, Buyse J, Delezie E (2015) Challenge with lipopolysaccharides or Freund’s adjuvant? What is the best option to trigger acute phase protein production in broilers? Res Vet Sci 99:96–98Google Scholar
  57. Lambeth LS, Morris KR, Wise TG, Cummins DM, O’Neil TE, Cao Y, Sinclair AH, Doran TJ, Smith CA (2016) Transgenic chickens overexpressing aromatase have high estrogen levels but maintain a predominantly male phenotype. Endocrinology 157:83–90Google Scholar
  58. Lee MO, Jang HJ, Rengaraj D, Yang SY, Han JY, Lamont SJ, Womack JE (2016) Tissue expression and antibacterial activity of host defense peptides in chicken. BMC Vet Res 12:231Google Scholar
  59. Li XS, Wang GQ, Du XD, Cui BA, Zhang SM, Shen JZ (2007) Antimicrobial susceptibility and molecular detection of chloramphenicol and florfenicol resistance among Escherichia coli isolates from diseased chickens. J Vet Sci 8:243–247Google Scholar
  60. Li G, Lillehoj HS, Lee KW, Jang SI, Marc P, Gay CG, Ritter GD, Bautista DA, Phillips K, Neumann AP, Rehberger TG, Siragusa GR (2010) An outbreak of gangrenous dermatitis in commercial broiler chickens. Avian Pathol 39:247–253Google Scholar
  61. Li CL, Xu TT, Chen RB, Huang XX, Zhao YC, Bao YY, Zhao WD, Zheng ZY (2013) Cloning, expression and characterization of antimicrobial porcine β defensin 1 in Escherichia coli. Protein Expr Purif 88:47–53Google Scholar
  62. Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 104:1771–1776Google Scholar
  63. Lioi AB, Ferrari BM, Dubyak GR, Weinberg A, Sieg SF (2015) Human β defensin-3 increases CD86 expression on monocytes by activating the ATP-gated channel P2X7. J Immunol 195:4438–4445Google Scholar
  64. Liu J, Luo Y, Ge H, Han C, Zhang H, Wang Y, Su J, Quan F, Gao M, Zhang Y (2013) Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer. PLoS ONE 8:e65379Google Scholar
  65. Liu X, Diarra MS, Zhang Y, Wang Q, Yu H, Nie SP, Xie MY, Gong J (2016) Effect of encapsulated carvacrol on the incidence of necrotic enteritis in broiler chickens. Avian Pathol 45:357–364Google Scholar
  66. Lou AG, Cai JS, Zhang XM, Cui CD, Piao YS, Guan LZ (2017) The aflatoxin-detoxifizyme specific expression in the parotid gland of transgenic pigs. Transgenic Res 26:677–687Google Scholar
  67. Lucianez A, Holmes MA, Tucker AW (2010) Relationships between processing delay and microbial load of broiler neck skin samples. J Food Prot 73:26–31Google Scholar
  68. Lutful Kabir SM (2010) Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health 7:89–114Google Scholar
  69. Lyall J, Irvine RM, Sherman A, McKinley TJ, Núñez A, Purdie A, Outtrim L, Brown IH, Rolleston-Smith G, Sang H, Tiley L (2011) Suppression of avian influenza transmission in genetically modified chickens. Science 331:223–226Google Scholar
  70. Ma D, Zhang M, Zhang K, Liu X, Han Z, Shao Y, Liu S (2013) Identification of three novel avian beta-defensins from goose and their significance in the pathogenesis of Salmonella. Mol Immunol 56:521–529Google Scholar
  71. Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, McGrew MJ (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci USA 109:E1466–E1472Google Scholar
  72. Maga EA, Walker RL, Anderson GB, Murray JD (2006) Consumption of milk from transgenic goats expressing human lysozyme in the mammary gland results in the modulation of intestinal microflora. Transgenic Res 15:515–519Google Scholar
  73. Mastroeni P, Villarreal-Ramos B, Hormaeche CE (1992) Role of T cells, TNF α and IFN γ in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated Aro-Salmonella vaccines. Microb Pathog 13:477–491Google Scholar
  74. McInnis EA, Kalanetra KM, Mills DA, Maga EA (2015) Analysis of raw goat milk microbiota: impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol 46:121–131Google Scholar
  75. Meade KG, Narciandi F, Cahalane S, Reiman C, Allan B, O’Farrelly C (2009) Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 61:101–110Google Scholar
  76. Mellata M, Johnson JR, Curtiss R 3rd (2018) Escherichia coli isolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections. Zoonoses Public Health 65:103–113Google Scholar
  77. Metz-Boutigue MH, Jollès J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jollès P (1984) Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 145:659–676Google Scholar
  78. Michailidis G, Anastasiadou M, Guibert E, Froment P (2014) Activation of innate immune system in response to lipopolysaccharide in chicken Sertoli cells. Reproduction 148:259–270Google Scholar
  79. Moffatt CR, Musto J, Pingault N, Miller M, Stafford R, Gregory J, Polkinghorne BG, Kirk MD (2001) Salmonella Typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathog Dis 13:379–385Google Scholar
  80. Morgan RW, Sofer L, Anderson AS, Bernberg EL, Cui J, Burnside J (2001) Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek’s disease virus. J Virol 75:533–539Google Scholar
  81. Mountzouris KC, Dalaka E, Palamidi I, Paraskeuas V, Demey V, Theodoropoulos G, Fegeros K (2015) Evaluation of yeast dietary supplementation in broilers challenged or not with Salmonella on growth performance, cecal microbiota composition and Salmonella in ceca, cloacae and carcass skin. Poult Sci 94:2445–2455Google Scholar
  82. Müller DM, Carrasco MS, Tonarelli GG, Simonetta AC (2009) Characterization and purification of a new bacteriocin with a broad inhibitory spectrum produced by Lactobacillus plantarum lp 31 strain isolated from dry-fermented sausage. J Appl Microbiol 106:2031–2040Google Scholar
  83. Nerren JR, Swaggerty CL, MacKinnon KM, Genovese KJ, He H, Pevzner I, Kogut MH (2009) Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics 61:71–77Google Scholar
  84. Ohashi H, Subedi K, Nishibori M, Isobe N, Yoshimura Y (2005) Expressions of antimicrobial peptide gallinacin-1, -2, and -3 mRNAs in the oviduct of laying hens. J Poult Sci 42:337–345Google Scholar
  85. Otani H, Odashima M (1997) Inhibition of proliferative responses of mouse spleen lymphocytes by lacto- and ovotransferrins. Food Argic Immunol 9:193–201Google Scholar
  86. OzFoodNet Working Group (2007) Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the Ozfoodnet Network, 2006. Commun Dis Intell Q Rep 31:345–365Google Scholar
  87. Park TS, Lee HG, Moon JK, Lee HJ, Yoon JW, Yun BN, Kang SC, Kim J, Kim H, Han JY, Han BK (2015) Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter. FASEB J 29:2386–2396Google Scholar
  88. Perron GG, Quessy S, Bell G (2008) A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts. PLoS ONE 3:e3749Google Scholar
  89. Petrov V, Funderburg N, Weinberg A, Sieg S (2013) Human β defensin-3 induces chemokines from monocytes and macrophages: diminished activity in cells from HIV-infected persons. Immunology 140:413–420Google Scholar
  90. Phongpa-Ngan P, Grider A, Mulligan JH, Aggrey SE, Wicker L (2011) Proteomic analysis and differential expression in protein extracted from chicken with a varying growth rate and water-holding capacity. J Agric Food Chem 59:13181–13187Google Scholar
  91. Pradhan AK, Li M, Li Y, Kelso LC, Costello TA, Johnson MG (2012) A modified Weibull model for growth and survival of Listeria innocua and Salmonella Typhimurium in chicken breasts during refrigerated and frozen storage. Poult Sci 91:1482–1488Google Scholar
  92. Psifidi A, Banos G, Matika O, Desta TT, Bettridge J, Hume DA, Dessie T, Christley R, Wigley P, Hanotte O, Kaiser P (2016) Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes. Genet Sel Evol 48:74Google Scholar
  93. Rahman MA, Samad MA, Rahman MB, Kabir SML (2004) In vitro antibiotic sensitivity and therapeutic efficacy of experimental salmonellosis, colibacillosis and pasteurellosis in broiler chickens. Bangladesh J Vet Med 2:99–102Google Scholar
  94. Ramasamy KT, Verma P, Reddy MR (2012) Differential gene expression of antimicrobial peptides β defensins in the gastrointestinal tract of Salmonella serovar Pullorum infected broiler chickens. Vet Res Commun 36:57–62Google Scholar
  95. Rath NC, Anthony NB, Kannan L, Huff WE, Huff GR, Chapman HD, Erf GF, Wakenell P (2009) Serum ovotransferrin as a biomarker of inflammatory diseases in chickens. Poult Sci 88:2069–2074Google Scholar
  96. Rehault-Godbert S, Baron F, Mignon-Grasteau S, Labas V, Gautier M, Hincke MT, Nys Y (2010) Effect of temperature and time of storage on protein stability and anti-Salmonella activity of egg white. J Food Prot 73:1604–1612Google Scholar
  97. Roberts JA, Miguel-Escalada I, Slovik KJ, Walsh KT, Hadzhiev Y, Sanges R, Stupka E, Marsh EK, Balciuniene J, Balciunas D, Müller F (2014) Targeted transgene integration overcomes variability of position effects in zebrafish. Development 141:715–724Google Scholar
  98. Röhrl J, Yang D, Oppenheim JJ, Hehlgans T (2010) Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol 184:6688–6694Google Scholar
  99. Rouger A, Tresse O, Zagorec M (2017) Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms 5:50Google Scholar
  100. Russell SM, Axtell SP (2005) Monochloramine versus sodium hypochlorite as antimicrobial agents for reducing populations of bacteria on broiler chicken carcasses. J Food Prot 68:758–763Google Scholar
  101. Russell SM, Fletcher DL, Cox NA (1995) Spoilage bacteria of fresh broiler chicken carcasses. Poult Sci 74:2041–2047Google Scholar
  102. Salter DW, Crittenden LB (1989) Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germ line of the chicken. Theor Appl Genet 77:457–461Google Scholar
  103. Schneitz C, Hakkinen M (2016) The efficacy of a commercial competitive exclusion product on Campylobacter colonization in broiler chickens in a 5-week pilot-scale study. Poult Sci 95:1125–1128Google Scholar
  104. Sellier N, Vidal ML, Baron F, Michel J, Gautron J, Protais M, Beaumont C, Gautier M, Nys Y (2007) Estimations of repeatability and heritability of egg albumen antimicrobial activity and of lysozyme and ovotransferrin concentrations. Br Poult Sci 48:559–566Google Scholar
  105. Shimizu M, Watanabe Y, Isobe N, Yoshimura Y (2008) Expression of avian beta-defensin 3, an antimicrobial peptide, by sperm in the male reproductive organs and oviduct in chickens: an immunohistochemical study. Poult Sci 87:2653–2659Google Scholar
  106. Singh R, Remington B, Blackall P, Turni C (2014) Epidemiology of fowl cholera in free range broilers. Avian Dis 58:124–128Google Scholar
  107. Smith HW, Tucker JF (1975) The virulence of Salmonella strains for chickens: their excretion by infected chickens. J Hyg 84:479–488Google Scholar
  108. Sonoda Y, Abdel Mageed AM, Isobe N, Yoshimura Y (2013) Induction of avian β-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cells in vitro. Reproduction 145:621–631Google Scholar
  109. Su F, Wang Y, Liu G, Ru K, Liu X, Yu Y, Liu J, Wu Y, Quan F, Guo Z, Zhang Y (2016) Generation of transgenic cattle expressing human β-defensin 3 as an approach to reducing susceptibility to Mycobacterium bovis infection. FEBS J 283:776–790Google Scholar
  110. Sui Z, Raubenheimer D, Cunningham J, Rangan A (2016) Changes in meat/poultry/fish consumption in Australia: from 1995 to 2011–2012. Nutrients 8:E753Google Scholar
  111. Swaggerty CL, Pevzner IY, He H, Genovese KJ, Nisbet DJ, Kaiser P, Kogut MH (2009) Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens. Foodborne Pathog Dis 6:777–783Google Scholar
  112. Swaggerty CL, Pevzner IY, Kogut MH (2014) Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis. Poult Sci 93:535–544Google Scholar
  113. Sylte MJ, Suarez DL (2012) Vaccination and acute phase mediator production in chickens challenged with low pathogenic avian influenza virus; novel markers for vaccine efficacy? Vaccine 30:3097–3105Google Scholar
  114. Toubar RA, Zhmurov A, Barsegov V, Marx KA (2013) Comparative simulation studies of native and single-site mutant human beta-defensin-1 peptides. J Biomol Struct Dyn 31:174–194Google Scholar
  115. Truscott RB, Lopez-Alvarez J, Pettit JR (1974) Studies of Escherichia coli infection in chickens. Can J Comp Med 38:160–167Google Scholar
  116. Tu S, Chi AL, Lim S, Cui G, Dubeykovskaya Z, Ai W, Fleming JV, Takaishi S, Wang TC (2007) Gastrin regulates the TFF2 promoter through gastrin-responsive cis-acting elements and multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol 292:G1726–G1737Google Scholar
  117. Tyack SG, Jenkins KA, O’Neil TE, Wise TG, Morris KR, Bruce MP, McLeod S, Wade AJ, McKay J, Moore RJ, Schat KA, Lowenthal JW, Doran TJ (2013) A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Res 22:1257–1264Google Scholar
  118. Valenti P, Antonini G, Von Hunolstein C, Visca P, Orsi N, Antonini E (1983) Studies of the antimicrobial activity of ovotransferrin. Int J Tissue React 5:97–105Google Scholar
  119. Valenti P, Visca P, Antonini G, Orsi N (1985) Antifungal activity of ovotransferrin towards genus Candida. Mycopathologia 89:169–175Google Scholar
  120. Van Droogenbroeck C, Dossche L, Wauman T, Van Lent S, Phan TT, Beeckman DS, Vanrompay D (2011) Use of ovotransferrin as an antimicrobial in turkeys naturally infected with Chlamydia psittaci, avian metapneumovirus and Ornithobacterium rhinotracheale. Vet Microbiol 153:257–263Google Scholar
  121. Van TTH, Gor MC, Anwar A, Scott PC, Moore RJ (2017) Campylobacter hepaticus, the cause of spotty liver disease in chickens, is present throughout the small intestine and caeca of infected birds. Vet Microbiol 207:226–230Google Scholar
  122. Vinayananda CO, Fairoze N, Madhavaprasad CB, Byregowda SM, Nagaraj CS, Bagalkot P, Karabasanavar N (2017) Studies on occurrence, characterisation and decontamination of emerging pathogenic Escherichia coli (STEC, ETEC and EIEC) in table eggs. Br Poult Sci 58:664–672Google Scholar
  123. Vrljicak P, Tao S, Varshney GK, Quach HN, Joshi A, LaFave MC, Burgess SM, Sampath K (2016) Genome-wide analysis of transposon and retroviral insertions reveals preferential integrations in regions of DNA flexibility. G3 (Bethesda) 6:805–817Google Scholar
  124. Wade B, Keyburn AL, Haring V, Ford M, Rood JI, Moore RJ (2016) The adherent abilities of Clostridium perfringens strains are critical for the pathogenesis of avian necrotic enteritis. Vet Microbiol 197:53–61Google Scholar
  125. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451Google Scholar
  126. Wang H, Wu H, Wang K, Cao Z, Yu K, Lian L, Lian Z (2016) Expression of recombinant human lysozyme in transgenic chicken promotes the growth of Bifidobacterium in the intestine and improves postnatal growth of chicken. AMB Express 6:110Google Scholar
  127. Wu Z, Hoover DM, Yang D, Boulegue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA 100:8880–8885Google Scholar
  128. Wu H, Cao D, Liu T, Zhao J, Hu X, Li N (2015) Purification and characterization of recombinant human lysozyme from eggs of transgenic chickens. PLoS ONE 10:e0146032Google Scholar
  129. Xie H, Huff GR, Huff WE, Balog JM, Rath NC (2002a) Effects of ovotransferrin on chicken macrophages and heterophil-granulocytes. Dev Comp Immunol 26:805–815Google Scholar
  130. Xie H, Newberry L, Clark FD, Huff WE, Huff GR, Balog JM, Rath NC (2002b) Changes in serum ovotransferrin levels in chickens with experimentally induced inflammation and diseases. Avian Dis 46:122–131Google Scholar
  131. Yacoub HA, El-Hamidy SM, Mahmoud MM, Baeshen MN, Almehdar HA, Uversky VN, Redwan EM, Al-Maghrabi OA, Elazzazy AM (2016) Biocidal activity of chicken defensin-9 against microbial pathogens. Biochem Cell Biol 94:176–187Google Scholar
  132. Yang Y, Jiang Y, Yin Q, Liang H, She R (2010) Chicken intestine defensins activated murine peripheral blood mononuclear cells through the TLR4-NF-kappaB pathway. Vet Immunol Immunopathol 133:59–65Google Scholar
  133. Yang X, Cheng YT, Tan MF, Zhang HW, Liu WQ, Zou G, Zhang LS, Zhang CY, Deng SM, Yu L, Hu XY, Li L, Zhou R (2015) Overexpression of porcine beta-defensin 2 enhances resistance to Actinobacillus pleuropneumoniae infection in pigs. Infect Immun 83:2836–2843Google Scholar
  134. Yang M, Zhang C, Zhang X, Zhang MZ, Rottinghaus GE, Zhang S (2016) Structure-function analysis of avian β-defensin-6 and β-defensin-12: role of charge and disulfide bridges. BMC Microbiol 16:210Google Scholar
  135. Yang M, Zhang C, Zhang MZ, Zhang S (2017) Novel synthetic analogues of avian β-defensin-12: the role of charge, hydrophobicity, and disulfide bridges in biological functions. BMC Microbiol 17:43Google Scholar
  136. Zhang R, Liu Z, Li J, Lei L, Yin W, Li M, Wu C, Walsh TR, Wang Y, Wang S, Wu Y (2017) Presence of VIM-positive Pseudomonas species in chickens and their surrounding environment. Antimicrob Agents Chemother 61:e00167-17Google Scholar
  137. Zhu XY, Zhong T, Pandya Y, Joerger RD (2002) 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 68:124–137Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Caitlin A. Cooper
    • 1
    Email author
  • Mark L. Tizard
    • 1
  • Tamsyn Stanborough
    • 2
  • Sean C. Moore
    • 2
  • P. Scott Chandry
    • 2
  • Kristie A. Jenkins
    • 1
  • Terry G. Wise
    • 1
  • Terri E. O’Neil
    • 1
  • Daniel S. Layton
    • 1
  • Kirsten R. Morris
    • 1
  • Robert J. Moore
    • 3
  • Narelle Fegan
    • 2
  • Timothy J. Doran
    • 1
  1. 1.CSIRO Health and BiosecurityGeelongAustralia
  2. 2.CSIRO Agriculture and FoodWerribeeAustralia
  3. 3.School of ScienceRMIT UniversityBundooraAustralia

Personalised recommendations