Advertisement

CRISPR/Cas9-induced monoallelic mutations in the cytosolic AGPase large subunit gene APL2 induce the ectopic expression of APL2 and the corresponding small subunit gene APS2b in rice leaves

  • Lucía Pérez
  • Erika Soto
  • Gemma Villorbina
  • Ludovic Bassie
  • Vicente Medina
  • Pilar Muñoz
  • Teresa Capell
  • Changfu Zhu
  • Paul Christou
  • Gemma Farré
Original Paper

Abstract

The first committed step in the endosperm starch biosynthetic pathway is catalyzed by the cytosolic glucose-1-phosphate adenylyl transferase (AGPase) comprising large and small subunits encoded by the OsAPL2 and OsAPS2b genes, respectively. OsAPL2 is expressed solely in the endosperm so we hypothesized that mutating this gene would block starch biosynthesis in the endosperm without affecting the leaves. We used CRISPR/Cas9 to create two heterozygous mutants, one with a severely truncated and nonfunctional AGPase and the other with a C-terminal structural modification causing a partial loss of activity. Unexpectedly, we observed starch depletion in the leaves of both mutants and a corresponding increase in the level of soluble sugars. This reflected the unanticipated expression of both OsAPL2 and OsAPS2b in the leaves, generating a complete ectopic AGPase in the leaf cytosol, and a corresponding decrease in the expression of the plastidial small subunit OsAPS2a that was only partially complemented by an increase in the expression of OsAPS1. The new cytosolic AGPase was not sufficient to compensate for the loss of plastidial AGPase, most likely because there is no wider starch biosynthesis pathway in the leaf cytosol and because pathway intermediates are not shuttled between the two compartments.

Keywords

CRISPR/Cas9 AGPase large subunit gene Rice Ectopic expression Monoallelic mutations 

Notes

Acknowledgements

We thank Dr. Caixia Gao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China) for providing pJIT163-2NLSCas9 containing the cas9 gene codon-optimized for rice, and the empty pU3-gRNA vector for the introduction of sgRNAs into rice. This work was supported by funding from the Spanish Ministry of Economy and Competitiveness (MINECO) (BIO2014-54426), and a Juan de la Cierva fellowship to GF (IJCI- 2014-19528). LP is the recipient of MINECO fellowship. ES is the recipient of a PhD fellowship from the University of Lleida (BIO2014-54441-P).

Supplementary material

11248_2018_89_MOESM1_ESM.pptx (4.8 mb)
Supplementary material 1 (PPTX 4873 kb)
11248_2018_89_MOESM2_ESM.pptx (61 kb)
Supplementary material 2 (PPTX 61 kb)
11248_2018_89_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 12 kb)

References

  1. Bader DM, Wilkening S, Lin G, Tekkedil MM, Dietrich K, Steinmetz LM, Gagneur J (2015) Negative feedback buffers effects of regulatory variants. Mol Syst Biol 11:785.  https://doi.org/10.15252/msb.20145844 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Bio 54:207–233CrossRefGoogle Scholar
  3. Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Microbiol Mol Biol Rev 67:213–225CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baroja-Fernandez E, Muñoz FJ, Montero M et al (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50:1651–1662CrossRefPubMedGoogle Scholar
  5. Bassie L, Zhu C, Romagosa I, Christou P, Capell T (2008) Transgenic wheat plants expressing an oat arginine decarboxylase cDNA exhibit increases in polyamine content in vegetative tissue and seeds. Mol Breed 22:39–50CrossRefGoogle Scholar
  6. Baysal C, Bortesi L, Zhu C, Farré G, Schillberg S, Christou P (2016) CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Mol Breed 36:108.  https://doi.org/10.1007/s11032-016-0533-4 CrossRefGoogle Scholar
  7. Bhagwat AS (1981) Activation of spinach ribulose 1,5-bisphosphate carboxylase by inorganic phosphate. Plant Sci Lett 23:197–206CrossRefGoogle Scholar
  8. Bortesi L, Zhu C, Zischewski J et al (2016) Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 14(12):2203–2216CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  10. Christou P, Ford T, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9:957–962CrossRefGoogle Scholar
  11. Colleoni C, Dauvillèe D, Moulle G et al (1999) Genetic and biochemical evidence for the involvement of α-1,4 glucanotransferases in amylopectin synthesis. Plant Physiol 120:993–1003CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cook FR, Fahy B, Trafford K (2012) A rice mutant lacking a large subunit of ADP-glucose pyrophosphorylase has drastically reduced starch content in the culm but normal plant morphology and yield. Funct Plant Biol 39:1068–1078CrossRefGoogle Scholar
  13. Dennis DT, Miernyk JA (1982) Compartmentation of non-photosynthetic carbohydrate metabolism. Annu Rev Plant Physiol 33:27–50CrossRefGoogle Scholar
  14. Doehlert DC, Kuo TM, Felker FC (1988) Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol 86:1013–1019CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096CrossRefPubMedGoogle Scholar
  16. Farré G, Sudhakar D, Naqvi S, Sandmann G, Christou P, Capell T, Zhu C (2012) Transgenic rice grains expressing a heterologous ρ-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the γ to the α isoform without increasing absolute tocopherol levels. Transgenic Res 21:1093–1097CrossRefPubMedGoogle Scholar
  17. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359CrossRefPubMedGoogle Scholar
  18. Flugge UI (1999) Phosphate translocators in plastids. Annu Rev Plant Physiol Plant Mol Biol 50:27–45CrossRefPubMedGoogle Scholar
  19. Giroux MJ, Hannah L (1994) ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet 243:400–408PubMedGoogle Scholar
  20. Guidi CJ, Veal TM, Jones SN, Imbalzano AN (2004) Transcriptional compensation for loss of an allele of the Ini1 tumor suppressor. J Biol Chem 279:4180–4185CrossRefPubMedGoogle Scholar
  21. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11:122–123CrossRefPubMedGoogle Scholar
  22. Heldt HW, Chon CH, Maronde D, Herold A, Stankovic AZ, Walker DA, Kraminer A, Kirk MR, Heber U (1977) Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol 59:1146–1155CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heldt HW, Chon CJ, Lorimer H (1978) Phosphate requirement for the light activation of ribulose-1,5-biphosphate carboxylase in intact spinach chloroplasts. FEBS Lett 92:234–240CrossRefGoogle Scholar
  24. Howard TP, Fahy B, Craggs A et al (2012) Barley mutants with low rates of endosperm starch synthesis have low grain dormancy and high susceptibility to preharvest sprouting. New Phytol 194:158–167CrossRefPubMedGoogle Scholar
  25. Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218CrossRefPubMedGoogle Scholar
  26. Johnson PE, Patron NJ, Bottrill AR et al (2003) A low-starch barley mutant, risø 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiol 131:684–696CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kang TJ, Yang MS (2004) Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants. BMC Biotechnol 4:20.  https://doi.org/10.1186/1472-6750-4-20 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kawagoe Y, Kubo A, Satoh H, TakaiwaF Nakamura Y (2005) Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. Plant J 42:164–174CrossRefPubMedGoogle Scholar
  29. Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271CrossRefPubMedPubMedCentralGoogle Scholar
  30. Laughlin MJ, Chantler SE, Okita TW (1998) N- and C- terminal peptide sequences are essential for enzyme assembly allosteric, and/or catalytic properties of ADP-glucose pyrophosphorylase. Plant J 14:159–168CrossRefPubMedGoogle Scholar
  31. Lee SK, Hwang SK, Han M, Eom JS, Kang HG, Han Y et al (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65:531–546CrossRefPubMedGoogle Scholar
  32. Lee J, Chung JH, Kim HM, Kim DW, Kim H (2016a) Designed nucleases for targeted genome editing. Plant Biotechnol J 14:448–462CrossRefPubMedGoogle Scholar
  33. Lee SK, Eom JS, Hwang SK, Shin D, An G, Okita TW, Jeon JS (2016b) Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J Exp Bot 67:5557–5569CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li J, Baroja-Fernández E, Bahaji A, Muñoz FJ, Ovecka M, Montero M et al (2013) Enhancing sucrose synthase activity results in an increased levels of starch and ADP-Glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol 54:282–294CrossRefPubMedGoogle Scholar
  35. Lundberg LE, Figueiredo ML, Stenberg P, Larsson J (2012) Buffering and proteolysis are induced by segmental monosomy in Drosophila melanogaster. Nucleic Acids Res 40:5926–5937CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284.  https://doi.org/10.1016/j.molp.2015.04.007 CrossRefPubMedGoogle Scholar
  37. Makarevitch I, Harris C (2010) Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize. Plant Physiol 152:927–938CrossRefPubMedPubMedCentralGoogle Scholar
  38. Martin C, Smith AM (1995) Starch biosynthesis. Plant Cell 7:971–985CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mikami M, Toki S, Endo M (2016) Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57:1058–1068CrossRefPubMedPubMedCentralGoogle Scholar
  40. Müller-Röber B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11:1229–1238PubMedPubMedCentralGoogle Scholar
  41. Muyle A, Zemp N, Deschamps C, Mousset S, Widmer A, Marais GA (2012) Rapid de novo evolution of x chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biol 10:e1001308CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nakamura Y, Francisco PB Jr, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58:213–227CrossRefPubMedGoogle Scholar
  43. Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244CrossRefPubMedGoogle Scholar
  45. Pandey MK, Rani NS, Madhav MS, Sundaram RM, Varaprasad GS, Sivaranjani AK et al (2012) Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol Adv 30:1697CrossRefPubMedGoogle Scholar
  46. Preiss J (1982) Regulation of the biosynthesis and degradation of starch. Ann Rev Plant Physiol 33:431–454CrossRefGoogle Scholar
  47. Preiss J (1994) Regulation of the C3 reductive cycle and carbohydrate synthesis. In: Tolbert NE, Preiss J (eds) Regulation of atmospheric CO2 and O2 by photosynthetic carbon metabolism, 1st edn. Oxford University Press, New York, pp 93–102Google Scholar
  48. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rösti S, Fahy B, Denyer K (2007) A mutant of rice lacking the leaf large subunit of ADP-glucose pyrophosphorylase has drastically reduced leaf starch content but grows normally. Funct Plant Biol 34:480–489CrossRefGoogle Scholar
  50. Rychter AM, Rao IM (2005) Role of phosphorus in photosynthetic carbon metabolism. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. Taylor y Francis group, Tucson, pp 123–148Google Scholar
  51. Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK et al (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410CrossRefPubMedGoogle Scholar
  53. Shimomura S, Nagai M, Fukui T (1982) Comparative glucan specificities of two types of spinach leaf phosphorylase. J Biochem 91:703–717CrossRefPubMedGoogle Scholar
  54. Steup M (1990) Starch degrading enzymes. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry. Academic Press, London, pp 103–128Google Scholar
  55. Stitt M, Heldt HW (1981) Physiological rates of starch breakdown in isolated intact spinach chloroplasts. Plant Physiol 68:755–761CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sudhakar D, Duc LT, Bong BB, Tinjuangjun P, Maqbool SB, Valdez M et al (1998) An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device. Transgenic Res 7:289–294CrossRefGoogle Scholar
  57. Sun Y, Jiao G, Liu Z et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298.  https://doi.org/10.3389/fpls.2017.00298 PubMedPubMedCentralGoogle Scholar
  58. Tang XJ, Peng C, Zhang J, Cai Y, You XM, Kong F et al (2016) ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Sci 249:70–83CrossRefPubMedGoogle Scholar
  59. Tester RF, Morrison WR, Schulman AH (1993) Swelling and gelatinization of cereal starches. V. Risø mutants of bomi and carlsberg II barley cultivars. J Cereal Sci 17:1–9CrossRefGoogle Scholar
  60. Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S et al (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16:694–708CrossRefPubMedPubMedCentralGoogle Scholar
  61. Trieu M, Ma A, Eng SR, Fedtsova N, Turner EE (2003) Direct autoregulation and gene dosage compensation by POU-domain transcription factor Brn3a. Development 130:111–121CrossRefPubMedGoogle Scholar
  62. Tsai CY, Nelson OE (1966) Starch-deficient maize mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science 151:341–343CrossRefPubMedGoogle Scholar
  63. Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T et al (2014) The rice endosperm ADP-Glucose pyrophosphorylase large subunits essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plant Cell Physiol 55:1169–1183CrossRefPubMedGoogle Scholar
  64. Valdez M, Cabrera-Ponce JL, Sudhakar D, Herrera-Estrella L, Christou P (1998) Transgenic central american, west african and asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. Annu Bot 82:795–801CrossRefGoogle Scholar
  65. Verta JP, Landry CR, MacKay J (2016) Dissection of expression-quantitative trait locus and allele specificity using a haploid/diploid plant system-insights into compensatory evolution of transcriptional regulation within populations. New Phytol 211:159–171CrossRefPubMedGoogle Scholar
  66. Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Determination of sugar and starch in plant tissue, 3erd edition. Laboratory manual for physiological studies of rice. The international rice research institute, Laguna Philippines, pp 46–49Google Scholar
  67. Yu Y, Mu HH, Wasserman BP, Carman GM (2001) Identification of the maize amyloplast stromal 112-kD protein as a plastidic starch phosphorylase. Plant Physiol 125:351–359CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yuan D, Bassie L, Sabalza M, Miralpeix B, Dashevskaya S, Farre G et al (2011) The potential impact of plant biotechnology on the Millennium Development Goals. Plant Cell Rep 30:249–265CrossRefPubMedGoogle Scholar
  69. Zhang D, Wu J, Zhang Y, Shi C (2012) Phenotypic and candidate gene analysis of a new floury endosperm mutant (osagpl2-3) in rice. Plant Mol Biol Report 30:1303–1312CrossRefGoogle Scholar
  70. Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G, Berman J et al (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11:129–141CrossRefPubMedGoogle Scholar
  71. Zhu C, Bortesi L, Baysal C, Twyman RM, Fischer R, Capell T et al (2017) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci 22:38–52CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lucía Pérez
    • 1
  • Erika Soto
    • 2
  • Gemma Villorbina
    • 2
  • Ludovic Bassie
    • 1
  • Vicente Medina
    • 1
  • Pilar Muñoz
    • 1
  • Teresa Capell
    • 1
  • Changfu Zhu
    • 1
  • Paul Christou
    • 1
    • 3
  • Gemma Farré
    • 1
  1. 1.Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida-Agrotecnio CenterLleidaSpain
  2. 2.Department of ChemistryUniversity of Lleida-Agrotecnio CenterLleidaSpain
  3. 3.Catalan Institute for Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations