Transgenic Research

, Volume 27, Issue 1, pp 25–38 | Cite as

Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4

  • Kenta Watanabe
  • Chihiro Oda-Yamamizo
  • Kimiyo Sage-Ono
  • Akemi Ohmiya
  • Michiyuki OnoEmail author
Original Paper


Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of I. nil. Using bioinformatics analysis, seven InCCD genes were identified in the I. nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar I. nil cv. AK77 caused the white petals to turn pale yellow. The total amount of carotenoids in the petals of ccd4 plants was increased 20-fold relative to non-transgenic plants. This result indicates that in the petals of I. nil, not only low carotenogenic gene expression but also carotenoid degradation leads to extremely low levels of carotenoids.


Carotenoid cleavage dioxygenase Carotenoid metabolic engineering CRISPR/Cas9 Flower colour alteration Ipomoea nil Targeted mutagenesis 



We are grateful to the National BioResource Project (NBRP) “Morning Glory,” which is supported by the Agency for Medical Research and Development (AMED) of Japan, for supplying information on the DNA sequence of I. nil. We also thank Dr. Masaki Endo and Dr. Seiichi Toki (Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization) for providing the vectors pDeCas9-Kan, pMR203, pMR204 and pMR205. This work was partially supported by a Cooperative Research Grant of the Plant Transgenic Design Initiative (PTraD), the Gene Research Center, T-PIRC, and the University of Tsukuba.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11248_2017_51_MOESM1_ESM.pptx (685 kb)
Supplementary material 1 (PPTX 684 kb)


  1. Ahrazem O, Trapero A, Gómez MD et al (2010) Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics 96:239–250. CrossRefPubMedGoogle Scholar
  2. Ahrazem O, Gómez-Gómez L, Rodrigo MJ et al (2016) Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. Int J Mol Sci 17:1781. CrossRefPubMedCentralGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ariizumi T, Kishimoto S, Kakami R et al (2014) Identification of the carotenoid modifying gene PALE YELLOW PETAL 1 as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (Solanum lycopersicum). Plant J 79:453–465. CrossRefPubMedGoogle Scholar
  5. Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321. CrossRefPubMedGoogle Scholar
  6. Bai S, Tuan PA, Tatsuki M et al (2016) Knockdown of Carotenoid Cleavage Dioxygenase 4 (CCD4) via virus-induced gene silencing confers yellow coloration in peach fruit: evaluation of gene function related to fruit traits. Plant Mol Biol Rep 34:257–264. CrossRefGoogle Scholar
  7. Brandi F, Bar E, Mourgues F et al (2011) Study of “Redhaven” peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:24–37. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B. Spectroscopy. Birkhäuser Verlag, Basel, pp 13–62Google Scholar
  9. Buah S, Mlalazi B, Khanna H et al (2016) The quest for Golden Bananas: investigating carotenoid regulation in a Fe’i group Musa cultivar. J Agric Food Chem 64:3176–3185. CrossRefPubMedGoogle Scholar
  10. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. CrossRefPubMedGoogle Scholar
  11. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359. CrossRefPubMedGoogle Scholar
  13. Galpaz N, Ronen G, Khalfa Z et al (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gomez-Roldan V, Fermas S, Brewer PB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194. CrossRefPubMedGoogle Scholar
  16. Gonzalez-Jorge S, Ha S-H, Magallanes-Lundback M et al (2013) Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds. Plant Cell 25:4812–4826. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Higuchi Y, Sage-Ono K, Kamada H, Ono M (2007) Isolation and characterization of novel genes controlled by short-day treatment in Pharbitis nil. Plant Biotechnol 24:201–207. CrossRefGoogle Scholar
  18. Hoshino A, Jayakumar V, Nitasaka E et al (2016) Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nat Commun 7:13295. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huang F-C, Molnár P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60:3011–3022. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ilg A, Yu Q, Schaub P et al (2010) Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta 232:691–699. CrossRefPubMedGoogle Scholar
  21. Kikuchi R, Sage-Ono K, Kamada H, Ono M (2005) Efficient transformation mediated by Agrobacterium tumefaciens with a ternary plasmid in Pharbitis nil. Plant Biotechnol 22:295–302. CrossRefGoogle Scholar
  22. Kishimoto S, Ohmiya A (2006) Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiol Plant 128:436–447. CrossRefGoogle Scholar
  23. Kishimoto S, Sumitomo K, Yagi M et al (2007) Three routes to orange petal color via carotenoid components in 9 compositae species. J Jpn Soc Hortic Sci 76:250–257. CrossRefGoogle Scholar
  24. Kloer DP, Schulz GE (2006) Structural and biological aspects of carotenoid cleavage. Cell Mol Life Sci 63:2291–2303. CrossRefPubMedGoogle Scholar
  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33:1870–1874. CrossRefGoogle Scholar
  26. Lätari K, Wüst F, Hübner M et al (2015) Tissue-specific apocarotenoid glycosylation contributes to carotenoid homeostasis in Arabidopsis leaves. Plant Physiol 168:1550–1562. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leitner-Dagan Y, Ovadis M, Shklarman E et al (2006) Expression and functional analyses of the plastid lipid-associated protein CHRC suggest its role in chromoplastogenesis and stress. Plant Physiol 142:233–244. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li L, Yuan H (2013) Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 539:102–109. CrossRefPubMedGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2T−ΔΔC method. Methods 25:402–408. CrossRefPubMedGoogle Scholar
  30. Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293. CrossRefPubMedGoogle Scholar
  31. Ohmiya A (2009) Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnol 26:351–358. CrossRefGoogle Scholar
  32. Ohmiya A, Kishimoto S, Aida R et al (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ohmiya A, Sumitomo K, Aida R (2009) “Yellow Jimba”: suppression of carotenoid cleavage dioxygenase (CmCCD4a) expression turns white chrysanthemum petals yellow. J Jpn Soc Hortic Sci 78:450–455. CrossRefGoogle Scholar
  34. Ohmiya A, Toyoda T, Watanabe H et al (2012) Mechanism behind petal color mutation induced by heavy-ion-beam irradiation of recalcitrant chrysanthemum cultivar. J Jpn Soc Hortic Sci 81:269–274. CrossRefGoogle Scholar
  35. Ono M, Sage-ono K, Kawakami M et al (2000) Agrobacterium-mediated regeneration and transformation of Pharbitis nil. Plant Biotechnol 17:211–216. CrossRefGoogle Scholar
  36. Park S, Kim HS, Jung YJ et al (2016) Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci Rep 6:33563. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. CrossRefPubMedGoogle Scholar
  38. Rodrigo MJ, Alquézar B, Alós E et al (2013) A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. J Exp Bot 64:4461–4478. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Saito N, Cheng J, Ichimura M et al (1994) Flavonoids in the acyanic flowers of Pharbitis nil. Phytochemistry 35:687–691. CrossRefGoogle Scholar
  40. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. PubMedGoogle Scholar
  41. Schwartz SH, Tan BC, Gage DA et al (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874. CrossRefPubMedGoogle Scholar
  42. Schwartz SH, Qin X, Zeevaart JAD (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211. CrossRefPubMedGoogle Scholar
  43. Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tan BC, Joseph LM, Deng WT et al (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56. CrossRefPubMedGoogle Scholar
  46. Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197. CrossRefPubMedGoogle Scholar
  47. Umehara M, Hanada A, Yoshida S et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200. CrossRefPubMedGoogle Scholar
  48. Vallabhaneni R, Bradbury LMT, Wurtzel ET (2010) The carotenoid dioxygenase gene family in maize, sorghum, and rice. Arch Biochem Biophys 504:104–111. CrossRefPubMedPubMedCentralGoogle Scholar
  49. van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502. CrossRefPubMedGoogle Scholar
  50. Vishnevetsky M, Ovadis M, Itzhaki H et al (1996) Molecular cloning of a carotenoid-associated protein from Cucumis sativus corollas: homologous genes involved in carotenoid sequestration in chromoplasts. Plant J 10:1111–1118. CrossRefPubMedGoogle Scholar
  51. Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17. CrossRefPubMedGoogle Scholar
  52. Watanabe K, Kobayashi A, Endo M et al (2017) CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Sci Rep 7:10028. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Watanabe K, Oda-Yamamizo C, Sage-Ono K et al (in press) Overexpression of carotenogenic genes in the Japanese morning glory Ipomoea (Pharbitis) nil. Plant Biotechnol.
  54. Wei Y, Wan H, Wu Z et al (2016) A comprehensive analysis of carotenoid cleavage dioxygenases genes in Solanum lycopersicum. Plant Mol Biol Rep 34:512–523. CrossRefGoogle Scholar
  55. Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129. CrossRefPubMedGoogle Scholar
  56. Winter D, Vinegar B, Nahal H et al (2007) An “electronic fluorescent pictograph” Browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:1–12. CrossRefGoogle Scholar
  57. Yamada T, Ichimura K, Kanekatsu M, Van Doorn WG (2007) Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers. Plant Cell Rep 26:823–835. CrossRefPubMedGoogle Scholar
  58. Yamamizo C, Kishimoto S, Ohmiya A (2010) Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. J Exp Bot 61:709–719. CrossRefPubMedGoogle Scholar
  59. Yamazaki Y, Akashi R, Banno Y et al (2009) NBRP databases: databases of biological resources in Japan. Nucleic Acids Res 38:D26–D32. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang B, Liu C, Wang Y et al (2015) Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytol 206:1513–1526. CrossRefPubMedGoogle Scholar
  61. Zhou X, Welsch R, Yang Y et al (2015) Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci USA 112:3558–3563. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Institute of Vegetable and Floriculture ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
  3. 3.Faculty of Life and Environmental Sciences, Gene Research Center, Tsukuba Plant Innovation Research Center (T-PIRC)University of TsukubaTsukubaJapan
  4. 4.Biological Resources and Post-Harvest DivisionJapan International Research Center for Agricultural SciencesTsukubaJapan

Personalised recommendations