Transgenic Research

, Volume 26, Issue 6, pp 715–726 | Cite as

Genome editing in livestock: Are we ready for a revolution in animal breeding industry?

  • Jinxue Ruan
  • Jie Xu
  • Ruby Yanru Chen-Tsai
  • Kui Li


Genome editing is a powerful technology that can efficiently alter the genome of organisms to achieve targeted modification of endogenous genes and targeted integration of exogenous genes. Current genome-editing tools mainly include ZFN, TALEN and CRISPR/Cas9, which have been successfully applied to all species tested including zebrafish, humans, mice, rats, monkeys, pigs, cattle, sheep, goats and others. The application of genome editing has quickly swept through the entire biomedical field, including livestock breeding. Traditional livestock breeding is associated with rate limiting issues such as long breeding cycle and limitations of genetic resources. Genome editing tools offer solutions to these problems at affordable costs. Generation of gene-edited livestock with improved traits has proven feasible and valuable. For example, the CD163 gene-edited pig is resistant to porcine reproductive and respiratory syndrome (PRRS, also referred to as “blue ear disease”), and a SP110 gene knock-in cow less susceptible to tuberculosis. Given the high efficiency and low cost of genome editing tools, particularly CRISPR/Cas9, it is foreseeable that a significant number of genome edited livestock animals will be produced in the near future; hence it is imperative to comprehensively evaluate the pros and cons they will bring to the livestock breeding industry. Only with these considerations in mind, we will be able to fully take the advantage of the genome editing era in livestock breeding.


Genome editing Livestock Breeding Industry 



This work was supported by The National Transgenic Project of China (2016ZX08006-001) and National Key Basic Research Program of China (2015CB943101) and Foshan University Initiative Scientific Research Program.


  1. Aldemita RR, Reano IM, Solis RO, Hautea RA (2015) Trends in global approvals of biotech crops (1992–2014). GM Crops Food 6:150–166CrossRefPubMedPubMedCentralGoogle Scholar
  2. Araki M, Nojima K, Ishii T (2014) Caution required for handling genome editing technology. Trends Biotechnol 32:234–237CrossRefPubMedGoogle Scholar
  3. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL (2017) Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 13:e1006206CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, Xiao G, Li B, Xie S, Gao T, Chen Y, Liu J, An X, Cui W, Li K (2017) Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget 8:34911–34922PubMedPubMedCentralGoogle Scholar
  5. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34:479–481CrossRefPubMedGoogle Scholar
  7. Chen H, Li C, Fang M, Zhu M, Li X, Zhou R, Li K, Zhao S (2009) Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genom 10:64CrossRefGoogle Scholar
  8. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davoli R, Braglia S (2007) Molecular approaches in pig breeding to improve meat quality. Brief Funct Genomic Proteomic 6:313–321CrossRefPubMedGoogle Scholar
  11. Deng S, Yu K, Zhang B, Yao Y, Liu Y, He H, Zhang H, Cui M, Fu J, Lian Z, Li N (2012) Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells. BMC Vet Res 8:196CrossRefPubMedPubMedCentralGoogle Scholar
  12. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duijvesteijn N, Knol EF, Merks JW, Crooijmans RP, Groenen MA, Bovenhuis H, Harlizius B (2010) A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6. BMC Genet 11:42CrossRefPubMedPubMedCentralGoogle Scholar
  14. Feng W, Dai Y, Mou L, Cooper DK, Shi D, Cai Z (2015) The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci 16:6545–6556CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jonas E, de Koning DJ (2015) Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Front Genet 6:49CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lee K, Kwon DN, Ezashi T, Choi YJ, Park C, Ericsson AC, Brown AN, Samuel MS, Park KW, Walters EM, Kim DY, Kim JH, Franklin CL, Murphy CN, Roberts RM, Prather RS, Kim JH (2014) Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA 111:7260–7265CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li X, Yang Y, Bu L, Guo X, Tang C, Song J, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yi X, Quan L, Liu S, Yang Z, Ouyang H, Chen YE, Wang Z, Lai L (2014) Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24:501–504CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li Y, Lian D, Deng S, Zhang X, Zhang J, Li W, Bai H, Wang Z, Wu H, Fu J, Han H, Feng J, Liu G, Lian L, Lian Z (2016) Efficient production of pronuclear embryos in breeding and nonbreeding season for generating transgenic sheep overexpressing TLR4. J Anim Sci Biotechnol 7:38CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li R, Quan S, Yan X, Biswas S, Zhang D, Shi J (2017) Molecular characterization of genetically-modified crops: challenges and strategies. Biotechnol Adv 35:302–309CrossRefPubMedGoogle Scholar
  24. Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ, McLaren DG, Fahrenkrug SC, Whitelaw CB (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847CrossRefPubMedGoogle Scholar
  25. Lillico SG, Proudfoot C, King TJ, Tan W, Zhang L, Mardjuki R, Paschon DE, Rebar EJ, Urnov FD, Mileham AJ, McLaren DG, Whitelaw CB (2016) Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 6:21645CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565PubMedPubMedCentralGoogle Scholar
  27. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014) Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases. Proc Biol Sci 281:20133368CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  29. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  31. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785CrossRefPubMedGoogle Scholar
  32. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C (2014) Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE 9:e106718CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakura M, Moriyama K, Ohuchi H, Noji S (2002) A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem Biophys Res Commun 293:247–251CrossRefPubMedGoogle Scholar
  34. Ollivier L, Sellier P (1982) Pig genetics: a review. Ann Genet Sel Anim 14:481–544PubMedPubMedCentralGoogle Scholar
  35. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC (2015) Genome edited sheep and cattle. Transgenic Res 24:147–153CrossRefPubMedGoogle Scholar
  36. Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W (2015) Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H, Chen-Tsai RY, Li K (2015) Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5:14253CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sato M, Miyoshi K, Nagao Y, Nishi Y, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S (2014) The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the alpha-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation 21:291–300CrossRefPubMedGoogle Scholar
  40. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688CrossRefPubMedGoogle Scholar
  41. Tang M, Zheng X, Cheng W, Jin E, Chen H, Yang S, Cui W, Li K (2011) Safety assessment of sFat-1 transgenic pigs by detecting their co-habitant microbe in intestinal tract. Transgenic Res 20:749–758CrossRefPubMedGoogle Scholar
  42. Tang M, Qian L, Jiang S, Zhang J, Song P, Chen Y, Cui W, Li K (2014) Functional and safety evaluation of transgenic pork rich in omega-3 fatty acids. Transgenic Res 23:557–571CrossRefPubMedGoogle Scholar
  43. Tao C, Yang Y, Li X, Zheng X, Ren H, Li K, Zhou R (2016) Rapid and sensitive detection of sFAT-1 transgenic pigs by visual loop-mediated isothermal amplification. Appl Biochem Biotechnol 179:938–946CrossRefPubMedGoogle Scholar
  44. Waltz E (2012) Tiptoeing around transgenics. Nat Biotechnol 30:215–217CrossRefPubMedGoogle Scholar
  45. Waltz E (2016a) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293CrossRefPubMedGoogle Scholar
  46. Waltz E (2016b) GM salmon declared fit for dinner plates. Nat Biotechnol 34:7–9CrossRefPubMedGoogle Scholar
  47. Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015a) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5:16623CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y (2015b) Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 5:13878CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wei J, Wagner S, Lu D, Maclean P, Carlson DF, Fahrenkrug SC, Laible G (2015) Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Sci Rep 5:11735CrossRefPubMedPubMedCentralGoogle Scholar
  50. Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78CrossRefPubMedPubMedCentralGoogle Scholar
  51. Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34:20–22CrossRefPubMedGoogle Scholar
  52. Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wood RJ (1973) Robert Bakewell (1725–1795), pioneer animal breeder, and his influence on Charles Darwin. Folia Mendeliana 58:231–242PubMedGoogle Scholar
  54. Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (2015) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112:E1530–E1539CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yang S, Li X, Li K, Fan B, Tang Z (2014) A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genet 15:7CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yao J, Huang J, Hai T, Wang X, Qin G, Zhang H, Wu R, Cao C, Xi JJ, Yuan Z, Zhao J (2014) Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep 4:6926CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21:1638–1640CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Life ScienceFoshan UniversityFoshanChina
  2. 2.Center for Advanced Models for Translational Sciences and TherapeuticsUniversity of Michigan Medical CenterAnn ArborUSA
  3. 3.Applied StemCell, IncMilpitasUSA
  4. 4.Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations