Transgenic Research

, Volume 26, Issue 6, pp 775–789 | Cite as

High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza

  • Yanaysi Ceballo
  • Kenia Tiel
  • Alina López
  • Gleysin Cabrera
  • Marlene Pérez
  • Osmany Ramos
  • Yamilka Rosabal
  • Carlos Montero
  • Rima Menassa
  • Ann Depicker
  • Abel Hernández
Original Paper


Tobacco seeds can be used as a cost effective system for production of recombinant vaccines. Avian influenza is an important respiratory pathogen that causes a high degree of mortality and becomes a serious threat for the poultry industry. A safe vaccine against avian flu produced at low cost could help to prevent future outbreaks. We have genetically engineered tobacco plants to express extracellular domain of hemagglutinin protein from H5N1 avian influenza virus as an inexpensive alternative for production purposes. Two regulatory sequences of seed storage protein genes from Phaseolus vulgaris L. were used to direct the expression, yielding 3.0 mg of the viral antigen per g of seeds. The production and stability of seed-produced recombinant HA protein was characterized by different molecular techniques. The aqueous extract of tobacco seed proteins was used for subcutaneous immunization of chickens, which developed antibodies that inhibited the agglutination of erythrocytes after the second application of the antigen. The feasibility of using tobacco seeds as a vaccine carrier is discussed.


Avian influenza Tobacco seed Hemagglutinin Phaseolin promoter 



We thank the Department of Plant Systems Biology of Ghent University Belgium for supplying the signals for expression in seeds. In addition, we would like to extend our appreciation to the staff of the National Centre for Animal and Plant Health (CENSA), Cuba for their help with immunization of chickens.


  1. Arcalis E, Ibl V, Peters J, Melnik S, Stoger E (2014) The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Front Plant Sci 5:1–12Google Scholar
  2. Bertran K, Thomas C, Guo X, Bublot M et al (2015) Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens. Vaccine 33:3456–3462. doi: 10.1016/j.vaccine.2015.05.076 CrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Cabrera G, Salazar V, Montesino R, Tambara Y et al (2016) Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae). Glycobiology 26:230–250. doi: 10.1093/glycob/cwv096 PubMedGoogle Scholar
  5. Cardoso FM, Ibañez LI, Van den Hoecke S, De Baets S et al (2014) Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 88:8278–8296CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cho A, Wrammert J (2016) Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Curr Opin Virol 17:110–115CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cinatl J, Michaelis M, Doerr HW (2007) The threat of avian influenza A (H5N1). Part IV: development of vaccines. Med Microbiol Immunol 196:213–225CrossRefPubMedGoogle Scholar
  8. D’Aoust MA, Lavoie PO, Couture MMJ, Trépanier S et al (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940CrossRefPubMedGoogle Scholar
  9. D’Aoust MA, Couture MMJ, Charland N, Trepanier S, Landry N, Ors F, Vézina LP (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619CrossRefPubMedGoogle Scholar
  10. De Jaeger G, Scheffer S, Jacobs A, Zambre M et al (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20:1265–1268CrossRefPubMedGoogle Scholar
  11. De Meyer T, Depicker A (2014) Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana. Front Plant Sci 5:1–7Google Scholar
  12. De Wilde K, De Buck S, Vanneste K, Depicker A (2013) Recombinant antibody production in Arabidopsis seeds triggers an unfolded protein response. Plant Physiol 161:1021–1033CrossRefPubMedGoogle Scholar
  13. Drakakaki G, Marcel S, Arcalis E, Altmann F et al (2006) The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol 141:578–586CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM et al (2015) Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 37:265–279CrossRefPubMedGoogle Scholar
  15. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS (2006) Strategies for mitigating an influenza pandemic. Nature 442:448–452CrossRefPubMedGoogle Scholar
  16. Fitchette-Lainé AC, Gomord V, Cabanes M, Michalski JC et al (1997) N-Glycans harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J 12:1411–1417CrossRefPubMedGoogle Scholar
  17. Franconi R, Massa S, Illiano E, Muller A et al (2006) Exploiting the plant secretory pathway to improve the anti-cancer activity of a plant-derived HPV16 E7 vaccine. Int J Immunopathol Pharmacol 19:187PubMedGoogle Scholar
  18. Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240:210–226CrossRefPubMedGoogle Scholar
  19. Gupta A, Shaikh AC, Chaphalkar SR (2017) Aqueous extract of Calamus rotang as a novel immunoadjuvant enhances both humoral and cell mediated immune response. J Herbmed Pharmacol 6:43–48Google Scholar
  20. Hannoun C, Megas F, Piercy J (2004) Immunogenicity and protective efficacy of influenza vaccination. Virus Res 103:133–138CrossRefPubMedGoogle Scholar
  21. Harvey DJ, Crispin M, Moffatt BE, Smith SL, Sim RB, Rudd PM, Dwek RA (2009) Identification of high-mannose and multiantennary complex-type N-linked glycans containing alpha-galactose epitopes from Nurse shark IgM heavy chain. Glycoconj J 26:1055–1064. doi: 10.1007/s10719-008-9226-5 CrossRefPubMedGoogle Scholar
  22. Hernández A, López A, Ceballo Y, Rosabal L et al (2013) High-level production and aggregation of hepatitis B surface antigen in transgenic tobacco seeds. Biotecnol Apl 30:97–100Google Scholar
  23. Hernández A, López A, Ceballo Y, Cabrera G et al (2015) Tobacco seeds as efficient production platform for a biologically active anti-HBsAg monoclonal antibody. Transgenic Res 24:897–909CrossRefGoogle Scholar
  24. Hien TT, Liem NT, Dung NT, San LT et al (2004) Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 350:1179–1188CrossRefGoogle Scholar
  25. Hofbauer A, Stoger E (2013) Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues. Curr Pharm Des 19:5495–5502CrossRefPubMedGoogle Scholar
  26. Hofbauer A, Melnik S, Tschofen M, Arcalis E et al (2016) The encapsulation of hemagglutinin in protein bodies achieves a stronger immune response in mice than the soluble antigen. Front Plant Sci 7:142. doi: 10.3389/fpls.2016.00142 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Horsch R, Klee H (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of T-DNA borders in the transfer process. Proc Natl Acad Sci 83:4428–4432CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hudson LC, Garg R, Bost KL, Piller KJ (2014) Soybean seeds: a practical host for the production of functional subunit vaccines. Biomed Res Int 2014:340804. doi: 10.1155/2014/340804 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Infl WA, Manu U (2002) WHO manual on animal influenza diagnosis and surveillance. World Health Organization, GenevaGoogle Scholar
  30. Jiao P, Song H, Liu X, Song Y et al (2016) Pathogenicity, transmission and antigenic variation of H5N1 highly pathogenic avian influenza viruses. Front Microbiol 7:635PubMedPubMedCentralGoogle Scholar
  31. Kalthoff D, Giritch A, Geisler K, Bettmann U et al (2010) Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. J Virol 84:12002–12010CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kapczynski DR, Tumpey TM, Hidajat R, Zsak A, Chrzastek K, Tretyakova I, Pushko P (2016) Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses. Vaccine 34:1575–1581. doi: 10.1016/j.vaccine.2016.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim JI, Lee I, Park S, Hwang M-W et al (2013) Genetic requirement for hemagglutinin glycosylation and its implications for influenza A H1N1 virus evolution. J Virol 87:7539–7549CrossRefPubMedPubMedCentralGoogle Scholar
  34. Klenk HD (2014) Influenza viruses en route from birds to man. Cell Host Microbe 15:653–654CrossRefPubMedGoogle Scholar
  35. Landry N, Ward BJ, Trepanier S, Montomoli E, Dargis M, Lapini G, Vezina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 5:e15559. doi: 10.1371/journal.pone.0015559 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé A-C, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48CrossRefPubMedGoogle Scholar
  37. Liu YV, Massare MJ, Pearce MB, Sun X et al (2015) Recombinant virus-like particles elicit protective immunity against avian influenza A (H7N9) virus infection in ferrets. Vaccine 33:2152–2158CrossRefPubMedGoogle Scholar
  38. Macioła AK, Pietrzak MA, Kosson P, Czarnocki-Cieciura M, Śmietanka K, Minta Z, Kopera E (2017) The length of N-glycans of recombinant H5N1 hemagglutinin influences the oligomerization and immunogenicity of vaccine antigen. Front Immunol 8:444CrossRefPubMedPubMedCentralGoogle Scholar
  39. Major D, Chichester JA, Pathirana RD, Guilfoyle K et al (2015) Intranasal vaccination with a plant-derived H5 HA vaccine protects mice and ferrets against highly pathogenic avian influenza virus challenge. Hum Vaccin Immunother 11:1235–1243PubMedPubMedCentralGoogle Scholar
  40. Mallajosyula VV, Citron M, Ferrara F, Lu X et al (2014) Influenza hemagglutinin stem–fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci 111:E2514–E2523CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marsian J, Lomonossoff GP (2016) Molecular pharming—VLPs made in plants. Curr Opin Biotechnol 37:201–206CrossRefPubMedGoogle Scholar
  42. Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9:590–603CrossRefPubMedGoogle Scholar
  43. Melo NS, Nimtz M, Conradt HS, Fevereiro PS, Costa J (1997) Identification of the human Lewisa carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.). FEBS Lett 415:186–191CrossRefPubMedGoogle Scholar
  44. Mett V, Musiychuk K, Bi H, Farrance CE et al (2008) A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Respir Viruses 2:33–40. doi: 10.1111/j.1750-2659.2008.00037.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Molinari N-AM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB (2007) The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25:5086–5096CrossRefPubMedGoogle Scholar
  46. Morandini F, Avesani L, Bortesi L, Van Droogenbroeck B et al (2011) Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals. Plant Biotechnol J 9:911–921CrossRefPubMedGoogle Scholar
  47. Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K (2015) Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep 34:969–980. doi: 10.1007/s00299-015-1758-0 CrossRefPubMedGoogle Scholar
  48. Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939CrossRefPubMedPubMedCentralGoogle Scholar
  49. Peeters B, Reemers S, Dortmans J, de Vries E et al (2017) Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: consequences for vaccine strain selection. Virology 503:83–93CrossRefPubMedGoogle Scholar
  50. Petruccelli S, Otegui MS, Lareu F, Tran Dinh O et al (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4:511–527PubMedGoogle Scholar
  51. Phan HT, Pohl J, Floss DM, Rabenstein F et al (2013) ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. Plant Biotechnol J 11:582–593CrossRefPubMedGoogle Scholar
  52. Phan HT, Hause B, Hause G, Arcalis E et al (2014) Influence of elastin-like polypeptide and hydrophobin on recombinant hemagglutinin accumulations in transgenic tobacco plants. PLoS ONE 9:e99347. doi: 10.1371/journal.pone.0099347 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pietrzak M, Macioła A, Zdanowski K, Protas-Klukowska AM et al (2016) An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge. Antiviral Res 133:242–249CrossRefPubMedGoogle Scholar
  54. Pose AG, Gomez JN, Sanchez AV, Redondo AV et al (2011) Subunit influenza vaccine candidate based on CD154 fused to HAH5 increases the antibody titers and cellular immune response in chickens. Vet Microbiol 152:328–337. doi: 10.1016/j.vetmic.2011.05.033 CrossRefPubMedGoogle Scholar
  55. Ramos OS, Pose AG, Gómez-Puerta S, Gomez JN et al (2011) Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens. Comp Immunol Microbiol Infect Dis 34:259–265CrossRefGoogle Scholar
  56. Rayon C, Lerouge P, Faye L (1998) The protein N-glycosylation in plants. J Exp Bot 49:1463–1472CrossRefGoogle Scholar
  57. Reperant LA, Moesker FM, Osterhaus AD (2016) Influenza: from zoonosis to pandemic. ERJ Open Res 2:00013–02016CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rossi L, Pinotti L, Agazzi A, Dell’Orto V, Baldi A (2014) Plant bioreactors for the antigenic hook-associated flgK protein expression. Ital J Anim Sci 13:2939CrossRefGoogle Scholar
  59. Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170CrossRefPubMedGoogle Scholar
  60. Samyn-Petit B, Gruber V, Flahaut C, Wajda-Dubos J-P et al (2001) N-glycosylation potential of maize: the human lactoferrin used as a model. Glycoconj J 18:519–527CrossRefPubMedGoogle Scholar
  61. Samyn-Petit B, Wajda Dubos JP, Chirat F, Coddeville B et al (2003) Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants. FEBS J 270:3235–3242Google Scholar
  62. Seitz C, Isken B, Heynisch B, Rettkowski M, Frensing T, Reichl U (2012) Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering with the antiviral host response. Appl Microbiol Biotechnol 93:601–611CrossRefPubMedGoogle Scholar
  63. Shoji Y, Bi H, Musiychuk K, Rhee A et al (2009a) Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine 27:1087–1092. doi: 10.1016/j.vaccine.2008.11.108 CrossRefPubMedGoogle Scholar
  64. Shoji Y, Farrance CE, Bi H, Shamloul M et al (2009b) Immunogenicity of hemagglutinin from A/Bar-headed Goose/Qinghai/1A/05 and A/Anhui/1/05 strains of H5N1 influenza viruses produced in Nicotiana benthamiana plants. Vaccine 27:3467–3470. doi: 10.1016/j.vaccine.2009.01.051 CrossRefPubMedGoogle Scholar
  65. Shoji Y, Prokhnevsky A, Leffet B, Vetter N et al (2015) Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccin Immunother 11:118–123. doi: 10.4161/hv.34365 CrossRefPubMedGoogle Scholar
  66. Soema PC, Kompier R, Amorij JP, Kersten GF (2015) Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm 94:251–263. doi: 10.1016/j.ejpb.2015.05.023 CrossRefPubMedGoogle Scholar
  67. Sourrouille C, Marquet-Blouin E, D’Aoust MA, Kiefer-Meyer MC et al (2008) Down-regulated expression of plant-specific glycoepitopes in alfalfa. Plant Biotechnol J 6:702–721CrossRefPubMedGoogle Scholar
  68. Spitsin S, Andrianov V, Pogrebnyak N, Smirnov Y et al (2009) Immunological assessment of plant-derived avian flu H5/HA1 variants. Vaccine 27:1289–1292CrossRefPubMedGoogle Scholar
  69. Tate MD, Job ER, Deng Y-M, Gunalan V, Maurer-Stroh S, Reading PC (2014) Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6:1294–1316CrossRefPubMedPubMedCentralGoogle Scholar
  70. Topp E, Irwin R, McAllister T, Lessard M et al (2016) The case for plant-made veterinary immunotherapeutics. Biotechnol Adv. doi: 10.1016/j.biotechadv.2016.02.007 PubMedGoogle Scholar
  71. Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 9:271–294CrossRefGoogle Scholar
  72. Vamvaka E, Twyman RM, Murad AM, Melnik S et al (2016) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnol J 14:97–108CrossRefPubMedGoogle Scholar
  73. Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F et al (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci 104:1430–1435CrossRefPubMedPubMedCentralGoogle Scholar
  74. Van Kerkhove MD, Mumford E, Mounts AW, Bresee J, Ly S, Bridges CB, Otte J (2011) Highly pathogenic avian influenza (H5N1): pathways of exposure at the animal–human interface, a systematic review. PLoS ONE 6:e14582CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang X, Jiang D, Shi J, Yang D (2017) Expression of α-1,6-fucosyltransferase (FUT8) in rice grain and immunogenicity evaluation of plant-specific glycans. J Biotechnol 242:111–121CrossRefPubMedGoogle Scholar
  76. Ward BJ, Landry N, Trépanier S, Mercier G et al (2014) Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine 32:6098–6106CrossRefPubMedGoogle Scholar
  77. Wei C-J, Xu L, Kong W-P, Shi W et al (2008) Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol 82:6200–6208CrossRefPubMedPubMedCentralGoogle Scholar
  78. Weldon WC, Wang B-Z, Martin MP, Koutsonanos DG, Skountzou I, Compans RW (2010) Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS ONE 5:e12466CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yao N, Ai L, Dong Y, Liu X et al (2016) Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds. Genet Mol Res 15:1–9Google Scholar
  80. Yassine HM, Boyington JC, McTamney PM, Wei C-J et al (2015) Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat Med 21:1065–1070CrossRefPubMedGoogle Scholar
  81. Young KR, Arthus-Cartier G, Yam KK, Lavoie P-O et al (2015) Generation and characterization of a trackable plant-made influenza H5 virus-like particle (VLP) containing enhanced green fluorescent protein (eGFP). FASEB J 29:3817–3827CrossRefPubMedGoogle Scholar
  82. Yusibov V, Kushnir N, Streatfield SJ (2016) Antibody production in plants and green algae. Annu Rev Plant Biol 67:669–701CrossRefPubMedGoogle Scholar
  83. Zhang X, Chen S, Jiang Y, Huang K et al (2015) Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus. Vet Microbiol 175:244–256. doi: 10.1016/j.vetmic.2014.12.011 CrossRefPubMedGoogle Scholar
  84. Zhao D, Liang L, Wang S, Nakao T et al (2017) Glycosylation of the hemagglutinin protein of H5N1 influenza virus increases its virulence in mice by exacerbating the host immune response. J Virol 91:e02215–e02216PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yanaysi Ceballo
    • 1
  • Kenia Tiel
    • 1
  • Alina López
    • 1
  • Gleysin Cabrera
    • 2
  • Marlene Pérez
    • 1
  • Osmany Ramos
    • 1
  • Yamilka Rosabal
    • 1
  • Carlos Montero
    • 3
  • Rima Menassa
    • 4
  • Ann Depicker
    • 5
    • 6
  • Abel Hernández
    • 1
  1. 1.Plant Biotechnology DepartmentCenter for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
  2. 2.Department of Carbohydrate ChemistryCenter for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
  3. 3.Animal Biotechnology DepartmentCenter for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
  4. 4.London Research and Development CentreAgriculture and Agri-Food CanadaLondonCanada
  5. 5.Department Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  6. 6.Department Plant Systems BiologieVIBGhentBelgium

Personalised recommendations