Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Reproductive parameters of double transgenic zebrafish (Danio rerio) males overexpressing both the growth hormone (GH) and its receptor (GHR)

  • 478 Accesses

  • 2 Citations


Growth hormone (GH) transgenesis presents a high potential application in aquaculture. However, excess GH may have serious consequences due to pleiotropic actions. In order to study these effects in zebrafish (Danio rerio), two transgenic lines were developed. The first expresses GH ubiquitously and constitutively (F0104 line), while the second expresses the GH receptor in a muscle-specific manner (Myo-GHR line). Results from the F0104 line showed accelerated growth but increased reproductive difficulties, while Myo-GHR did not show the expected increase in muscle mass. Since the two lines appeared to display complementary characteristics, a double transgenic (GH/GHR) was created via crossing between them. This double transgenic displayed accelerated growth, however reproductive parameters remained uncertain. The objective of the present study was to determine the reproductive capacity of males of this new line, by evaluating sperm parameters, expression of spermatogenesis-related genes, and reproductive tests. Double transgenics showed a strong recovery in almost all sperm parameters analyzed when compared to the F0104 line. Gene expression analyses revealed that Anti-Müllerian Hormone gene (amh) appeared to be primarily responsible for this recovery. Reproductive tests showed that double transgenic males did not differ from non-transgenics. It is possible that GHR excess in the muscle tissues of double transgenics may have contributed to lower circulating GH levels and thus reduced the negative effects of this hormone with respect to reproduction. Therefore, it is clear that GH-transgenesis technology should take into account the need to obtain adequate levels of circulating hormone in order to achieve maximum growth with minimal negative side effects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Ahmed ASI, Xiong F, Pang SC et al (2011) Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct. Transgenic Res 20:557–567. doi:10.1007/s11248-010-9439-9

  2. Batista CR, Figueiredo MA, Almeida DV et al (2014) Impairment of the immune system in GH-overexpressing transgenic zebrafish (Danio rerio). Fish Shellfish Immunol 36:519–524. doi:10.1016/j.fsi.2013.12.022

  3. Béné C, Barange M, Subasinghe R et al (2015) Feeding 9 billion by 2050—Putting fish back on the menu. Food Secur 7:261–274. doi:10.1007/s12571-015-0427-z

  4. Blutke A, Schneider MR, Renner-Muller I et al (2014) Genetic dissection of IGF1-dependent and -independent effects of permanent GH excess on postnatal growth and organ pathology of mice. Mol Cell Endocrinol 394:88–98. doi:10.1016/j.mce.2014.07.002

  5. Butler AA, LeRoith DL (2001) Control of growth by the somatotrophic axis: growth hormone and the insulin–like growth factors have related and independent roles. Annu Rev Physiol 63:141–164. doi:10.1146/annurev.physiol.63.1.141

  6. Cao M, Chen J, Peng W et al (2014) Effects of growth hormone over-expression on reproduction in the common carp Cyprinus carpio L. Gen Comp Endocrinol 195:47–57. doi:10.1016/j.ygcen.2013.10.011

  7. Carson FL, Hladik C (2009) Histotechnology—A self-instructional text, 3rd edn. ASCP Press, Chicago

  8. Devlin RH, Sundström LF, Muir WM (2006) Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends Biotechnol 24:89–97. doi:10.1016/j.tibtech.2005.12.008

  9. Devlin RH, Vandersteen WE, Uh M, Stevens ED (2012) Genetically modified growth affects allometry of eye and brain in salmonids. Can J Zool 90(2):193–202

  10. Domínguez-Rebolledo AE, Martínez-Pastor F, Bisbal AF, Ros-Santaella JL, García-Álvarez O, Maroto-Morales A, Soler AJ, Garde JJ, Fernández-Santos MR (2011) Response of thawed epidi dymal red deer spermatozoa to increasing concentrations of hydrogen peroxide, and importance of individual male variability. Reprod Domest Anim 46(3):393–403

  11. Dziewulska K, Rzemieniecki A, Czerniawski R, Domagała J (2011) Post-thawed motility and fertility from Atlantic salmon (Salmosalar L.) sperm frozen with four cryodiluents in straws or pellets. Theriogenology 76:300–311. doi:10.1016/j.theriogenology.2011.02.007

  12. FAO (2014) The state of the world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome. ISBN 978-92-5-108276-8

  13. Fernández-Gago R, Domínguez JC, Martínez-Pastor F (2013) Seminal plasma applied post–thawing affects boar sperm physiology: a flow cytometry study. Theriogenology 80:400–410. doi:10.1016/j.theriogenology.2013.05.003

  14. Figueiredo MDA, Lanes CFC, Almeida DV, Marins LF (2007) Improving the production of transgenic fish germlines: in vivo evaluation of mosaicism in zebrafish (Danio rerio) using a green fluorescent protein (GFP) and growth hormone cDNA transgene co-injection strategy. Genet Mol Biol 30:31–36. doi:10.1590/S1415-47572007000100008

  15. Figueiredo MA, Mareco EA, Silva MDP, Marins LF (2012) Muscle-specific growth hormone receptor (GHR) overexpression induces hyperplasia but not hypertrophy in transgenic zebrafish. Transgenic Res 21:457–469. doi:10.1007/s11248-011-9546-2

  16. Figueiredo MA, Fernandes RV, Studzinski AL et al (2013) GH overexpression decreases spermatic parameters and reproductive success in two-years-old transgenic zebrafish males. Anim Reprod Sci 139:162–167. doi:10.1016/j.anireprosci.2013.03.012

  17. Figueroa E, Merino O, Risopatrón J, Isachenko V, Sánchez R, Effer B, Isachenko E, Farias JG, Valdebenito I (2015) Effect of seminal plasma on Atlantic salmon (Salmo salar) sperm vitrification. Theriogenology 83(2):238–245

  18. Freitas AC, Rodrigues D, Rocha-Santos TP et al (2012) Marine biotechnology advances towards applications in new functional foods. Biotechnol Adv 30:1506–1515. doi:10.1016/j.biotechadv.2012.03.006

  19. Guerra SM, Valcarce DG, Cabrita E, Robles V (2013) Analysis of transcripts in gilthead seabream sperm and zebrafish testicular cells: mRNA profile as a predictor of gamete quality. Aquaculture 406–407:28–33. doi:10.1016/j.aquaculture.2013.04.032

  20. Hagedorn M, McCarthy M, Carter VL, Meyers SA (2012) Oxidative stress in zebrafish (Danio rerio) sperm. PLoS One 7:e39397. doi:10.1371/journal.pone.0039397

  21. Jenkins JA, Draugelis-Dale RO, Pinkney AE, Iwanowicz LR, Blazer VS (2015) Flow cytometric method for measuring chromatin fragmentation in fixed sperm from yellow perch (Perca flavescens). Theriogenology 83:920–931. doi:10.1016/j.theriogenology.2014.11.028

  22. Josso N (1986) Anti–müllerian hormone. Clin Endocrinol 25:331–345. doi:10.1111/j.1365-2265.1986.tb01699.x

  23. Kuradomi RY, Figueiredo MA, Lanes CFC et al (2011) GH overexpression causes muscle hypertrophy independent from local IGF-I in a zebrafish transgenic model. Transgenic Res 20:513–521. doi:10.1007/s11248-010-9429-y

  24. Leggatt RA, Biagi CA, Smith JL, Devlin RH (2012) Growth of growth hormone transgenic coho salmon Oncorhynchus kisutch is influenced by construct promoter type and family line. Aquaculture 356–357:193–199. doi:10.1016/j.aquaculture.2012.05.016

  25. Liu Q, Wang X, Wang W, Zhang X et al (2015) Effect of the addition of six antioxidants on sperm motility, membrane integrity and mitochondrial function in red seabream (Pagrus major) sperm cryopreservation. Fish Physiol Biochem 41:413–422. doi:10.1007/s10695-014-9993-9

  26. Martinez-Alborcia MJ, Valverde A, Parrilla I, Vazquez JM, Martinez EA, Roca J, Schlatt S (2012) Detrimental Effects of Non-Functional Spermatozoa on the Freezability of Functional Spermatozoa from Boar Ejaculate. PLoS ONE 7(5):e36550

  27. Moriyama S, Ayson FG, Kawauchi H (2000) Growth regulation by insulin-like growth factor-I in fish. Biosci Biotechnol Biochem 64:1553–1562. doi:10.1271/bbb.64.1553

  28. Ohyama K, Iwatani N, Nakagomi Y et al (1999) Growth hormone advances spermatogenesis in premature rats treated with gonadotropin-releasing hormone agonist. Endocr J 46:555–562. doi:10.1507/endocrj.46.555

  29. Rasmussen RS, Morrissey MT (2007) Biotechnology in aquaculture: transgenics and polyploidy. Compr Rev Food Sci Food Saf 6:2–16. doi:10.1111/j.1541-4337.2007.00013.x

  30. Raven PA, Uh M, Sakhrani D et al (2008) Endocrine effects of growth hormone overexpression in transgenic coho salmon. Gen Comp Endocrinol 159:26–37. doi:10.1016/j.ygcen.2008.07.011

  31. Rosa CE, Figueiredo MA, Lanes CFC et al (2008) Metabolic rate and reactive oxygen species production in different genotypes of GH-transgenic zebrafish. Comp Biochem Physiol B: Biochem Mol Biol 149:209–214. doi:10.1016/j.cbpb.2007.09.010

  32. Rosa CE, Kuradomi RY, Almeida DV et al (2010) GH overexpression modifies muscle expression of anti-oxidant enzymes and increases spinal curvature of old zebrafish. Exp Gerontol 45:449–456. doi:10.1016/j.exger.2010.03.012

  33. Rosa CE, Figueiredo MA, Lanes CFC et al (2011) Genotype-dependent gene expression profile of the antioxidant defense system (ADS) in the liver of a GH-transgenic zebrafish model. Transgenic Res 20:85–89. doi:10.1007/s11248-010-9395-4

  34. Shved N, Berishvili G, Mazel P et al (2011) Growth hormone (GH) treatment acts on the endocrine and autocrine/paracrine GH/IGF-axis and on TNF-α expression in bony fish pituitary and immune organs. Fish Shellfish Immunol 31:944–952. doi:10.1016/j.fsi.2011.08.012

  35. Silva ACG, Almeida DV, Figueiredo MA, Marins LF (2015a) Double transgenic zebrafish for somatotrophic axis: a tool for muscle development and growth Studies. Zebrafish 12:268–269. doi:10.1089/zeb.2015.1090

  36. Silva ACG, Almeida DV, Nornberg BF et al (2015b) Effects of double transgenesis of somatotrophic axis (GH/GHR) on skeletal muscle growth of zebrafish (Danio rerio). Zebrafish 12:408–413. doi:10.1089/zeb.2015.29001.sil

  37. Skaar KS, Nóbrega RH, Magaraki A et al (2011) Proteolytically activated, recombinant anti-müllerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures. Endocrinology 152:3527–3540. doi:10.1210/en.2010-1469

  38. Stefaneanu L, Kovacs K, Bartke A, Mayerhofer A, Wagner TE (1993) Pituitary morphology of transgenic mice expressing bovine growth hormone. Lab Invest 68:584–591

  39. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

  40. Varela Junior AS, Goularte KL, Alves JP, Pereira FA et al (2015) Methods of cryopreservation of Tambaqui semen, Colossoma macropomum. Anim Reprod Sci 157:71–77. doi:10.1016/j.anireprosci.2015.03.017

  41. Wanke R, Hermanns W, Folger S, Wolf E, Brem G (1991) Accelerated growth and visceral lesions in transgenic mice expressing foreign genes of the growth hormone family: an overview. Pediatr Nephrol 5:513–521

  42. Wanke R, Milz S, Rieger N, Ogiolda L, Renner-Muller I et al (1999) Overgrowth of skin in growth hormone transgenic mice depends on the presence of male gonads. J Invest Dermatol 113:967–971

  43. Wanke R, Wolf E, Brem G, Hermanns W (2001) Role of podocyte damage in the pathogenesis of glomerulosclerosis and tubulointerstitial lesions: findings in the growth hormone transgenic mouse model of progressive nephropathy. Verh Dtsch Ges Pathol 85:250–256

  44. Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish Danio rerio, 3rd edn. University of Oregon Press, Eugene

  45. Wolf E, Kahnt E, Ehrlein J, Hermanns W, Brem G et al (1993) Effects of longterm elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech Ageing Dev 68:71–87

  46. Zbikowska HM (2003) Fish can be first—Advances in fish transgenesis for commercial. Transgenic Res 12(4):379–389

Download references


This work was financially supported by Brazilian CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) through a research fellowship awarded to Luis Fernando Marins (Proc. No. 305928/2015-5).

Author information

Correspondence to Luis Fernando Marins.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, A.C.G., Almeida, D.V., Nornberg, B.F. et al. Reproductive parameters of double transgenic zebrafish (Danio rerio) males overexpressing both the growth hormone (GH) and its receptor (GHR). Transgenic Res 26, 123–134 (2017). https://doi.org/10.1007/s11248-016-9990-0

Download citation


  • Somatotrophic axis
  • GH side effects
  • Double transgenesis
  • Zebrafish
  • Sperm