Advertisement

Transgenic Research

, Volume 25, Issue 6, pp 785–793 | Cite as

Engineered maize as a source of astaxanthin: processing and application as fish feed

  • Jürgen Breitenbach
  • Marilise Nogueira
  • Gemma Farré
  • Changfu Zhu
  • Teresa Capell
  • Paul Christou
  • Gunther Fleck
  • Ulfert Focken
  • Paul D. Fraser
  • Gerhard Sandmann
Original Paper

Abstract

Astaxanthin from a transgenic maize line was evaluated as feed supplement source conferring effective pigmentation of rainbow trout flesh. An extraction procedure using ethanol together with the addition of vegetal oil was established. This resulted in an oily astaxanthin preparation which was not sufficiently concentrated for direct application to the feed. Therefore, a concentration process involving multiple phase partitioning steps was implemented to remove 90 % of the oil. The resulting astaxanthin raw material contained non-esterified astaxanthin with 12 % 4-keto zeaxanthin and 2 % zeaxanthin as additional carotenoids. Isomeric analysis confirmed the exclusive presence of the 3S, 3′S astaxanthin enantiomer. The geometrical isomers were 89 % all-E, 8 % 13-Z and 3 % 9-Z. The incorporation of the oily astaxanthin preparation into trout feed was performed to deliver 7 mg/kg astaxanthin in the final feed formulation for the first 3.5 weeks and 72 mg/kg for the final 3.5 weeks of the feeding trial. The resulting pigmentation of the trout fillets was determined by hue values with a colour meter and further confirmed by astaxanthin quantification. Pigmentation properties of the maize-produced natural astaxanthin incorporated to 3.5 µg/g dw in the trout fillet resembles that of chemically synthesized astaxanthin. By comparing the relative carotenoid compositions in feed, flesh and feces, a preferential uptake of zeaxanthin and 4-keto zeaxanthin over astaxanthin was observed.

Keywords

Astaxanthin isomers Astaxanthin extraction Trout feeding GM maize Trout colouration 

Notes

Acknowledgments

Funding through the Plant KBBE project CaroMaize is gratefully acknowledged. Part of this article is based on work from COST Action CA15136. Further support to PC was by the Ministerio de Economia y Competitividad, Spain (BIO2014-54441-P, BIO2011-22525) and a European Research Council Advanced Grant (BIOFORCE) and Proof of Concept Grant (Multinutrient Maize) PROGRAMA ESTATAL DE INVESTIGACIÓN CIENTÍFICA Y TÉCNICA DE EXCELENCIA, Spain (BIO2015-71703-REDT). PDF and LP are grateful for funding from the EU FP7 project DISCO Grant Number 613513.

References

  1. Ambati RR, Moi PS, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152CrossRefPubMedPubMedCentralGoogle Scholar
  2. Büyükcapar HM, Yanar M, Yanar Y (2007) Pigmentation of rainbow trout (Oncorhynchus mykiss) with carotenoids from marigold flower (Tagetes erecta) and red pepper (Capsicum annum). Turk J Vet Anim Sci 31:7–12Google Scholar
  3. Choubert G, Mendes-Pinto MM, Morais R (2006) Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: effect of dietary astaxanthin and lipid sources. Aquaculture 257:429–436CrossRefGoogle Scholar
  4. Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S, Zhu C, Capell T, Christou P, Fraser P, Sandmann G (2015) Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. J Exp Bot 66:3141–3150CrossRefPubMedPubMedCentralGoogle Scholar
  5. Englert G, Vecchi M (1980) Trans/cis isomerization of astaxanthin diacetate/isolation by HPLC and identification by 1H-NMR spectroscopy of three mono-cis-and six di-cis-isomers. Helv Chim Acta 63:1711–1718CrossRefGoogle Scholar
  6. Farré G, Perez-Fons L, Decourcelle M, Breitenbach J, Hem S, Zhu C, Capell T, Christou C, Fraser PD, Sandmann G (2016) Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid. Transgenic Res. doi: 10.1007/s11248-016-9943-7 Google Scholar
  7. Foss P, Storebakken T, Schiedt K, Liaaen-Jensen S, Austreng E, Streiff K (1984) Carotenoids in diets for salmonids I. pigmentation of rainbow trout with the individual optical isomers of astaxanthin in comparison with canthaxanthin. Aquaculture 41:213–226CrossRefGoogle Scholar
  8. Gassel S, Breitenbach J, Sandmann G (2014) Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant. Appl Microbiol Biotechnol 98:345–350CrossRefPubMedGoogle Scholar
  9. Gaye-Siessegger J, McCullagh JSO, Focken U (2011) The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue δ13C of rainbow trout. Br J Nutr 105:1764–1771CrossRefPubMedGoogle Scholar
  10. Hamilton PB, Tirado JF, Garcia-Hernandez F (1990) Deposition in egg yolks of the carotenoids from saponified and unsaponified oleoresin of red pepper (Capsicum annuum). Poult Sci 69:462–470CrossRefGoogle Scholar
  11. Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67CrossRefPubMedGoogle Scholar
  12. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501CrossRefPubMedGoogle Scholar
  13. Kurnia A, Satoh S, Haga Y, Kudo H, Nakada M, Matsumura H, Watanabe Y, Adachi S (2015) Muscle coloration of rainbow trout with astaxanthin sources from marine bacteria and synthetic astaxanthin. J Aquac Res Dev 6:337Google Scholar
  14. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRefPubMedGoogle Scholar
  15. Megdal PA, Craft NA, Handelman GJ (2009) A simplified method to distinguish farmed (Salmo salar) from wild salmon: fatty acid ratios versus astaxanthin chiral isomers. Lipids 44:569–576CrossRefPubMedPubMedCentralGoogle Scholar
  16. Moretti VM, Mentasti T, Bellagamba F, Luzzana U, Caprino F, Turchini GM, Giani I, Valfrè F (2006) Determination of astaxanthin stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus mykiss) as a tool to distinguish the dietary pigmentation source. Food Addit Contam 23:105610–105663CrossRefGoogle Scholar
  17. Nobre B, Marcelo F, Passos R, Beirao L, Palavra A, Gouveia L, Mendes R (2006) Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur Food Res Technol 223:787–790CrossRefGoogle Scholar
  18. Roncarati A, Sirri F, Felici A, Stocchi L, Melotti P, Meluzzi A (2011) Effects of dietary supplementation with krill meal on pigmentation and quality of flesh of rainbow trout (Oncorhynchus mykiss). Ital J Animal Sci 10:e27CrossRefGoogle Scholar
  19. Sander LC, Sharpless KE, Craft NE, Wise SA (1994) Development of engineered stationary phases for the separation of carotenoid isomer. Anal Chem 66:1667–1674CrossRefPubMedGoogle Scholar
  20. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17CrossRefPubMedGoogle Scholar
  21. Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. ChemBioChem 3:629–635CrossRefPubMedGoogle Scholar
  22. Schiedt K, Liaaen-Jensen S (1995) Isolaton and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: isolation and analysis, vol 1A. Birkhauser-Verlag, Basel, pp 81–108Google Scholar
  23. Schiedt K, Bischof S, Glinz E (1995) Worked examples of isolation and analysis. 5. Fish. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: isolation and analysis, vol 1A. Birkhauser-Verlag, Basel, pp 243–252Google Scholar
  24. Schüep W, Schierle J (1995) Worked examples of isolation and analysis. 9. Astaxanthin. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: isolation and analysis, vol 1A. Birkhauser-Verlag, Basel, pp 273–276Google Scholar
  25. Storebakken T, No HK (1992) Pigmentation of rainbow trout. Aquaculture 100:209–229CrossRefGoogle Scholar
  26. Takaichi S, Matsui K, Nakamura M, Muramatsu M, Hanadac S (2003) Fatty acids of astaxanthin esters in krill determined by mild mass spectrometry. Comp Biochem Physiol B 136:317–322CrossRefPubMedGoogle Scholar
  27. Torrissen OJ, Hardy KW, Shearer KD (1989) Pigmentation of salmonids—carotenoid deposition and metabolism. CRC Crit Rev Aquat Sci 1:209–225Google Scholar
  28. Tyczkowski JK, Hamilton PB (1986) Absorption, transport, and deposition in chickens of lutein diester, a carotenoid extracted from marigold (Tagetes erecta) petals. Poult Sci 65:1526–1531CrossRefPubMedGoogle Scholar
  29. Visser H, Sandmann G, Verdoes JC (2005) Xantophylls in fungi: metabolic engineering of the astaxanthin biosynthetic pathway in Xantophyllomyces denrorhous. In: Barredo J (ed) Methods biotechnol, microbial processes and products. Totowa, pp 257–272Google Scholar
  30. Wang C, Armstrong DW, Chang C (2008) Rapid baseline separation of enantiomers and a mesoform of all-trans-astaxanthin, 13-cis-astaxanthin, adonirubin, and adonixanthin in standards and commercial supplements. J Chromatogr A 1194:172–177CrossRefPubMedGoogle Scholar
  31. Ytrestøyl T, Bjerkeng B (2007) Intraperitoneal and dietary administration of astaxanthin in rainbow trout (Oncorhynchus mykiss)—plasma uptake and tissue distribution of geometrical E/Z isomers. Comp Biochem Physiol B Biochem Mol Biol 147:250–259CrossRefPubMedGoogle Scholar
  32. Zhao X, Hu J, Zhang X, Li X, Leng X, Wu S, Cheng D (2016) Effects of E/Z isomers and coating materials of astaxanthin products on the pigmentation and antioxidation of rainbow trout, Oncorhynchus mykiss. J World Aquac Soc. doi: 10.1111/jwas.12277 Google Scholar
  33. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jürgen Breitenbach
    • 1
  • Marilise Nogueira
    • 2
  • Gemma Farré
    • 3
  • Changfu Zhu
    • 3
  • Teresa Capell
    • 3
  • Paul Christou
    • 3
    • 6
  • Gunther Fleck
    • 4
  • Ulfert Focken
    • 5
  • Paul D. Fraser
    • 2
  • Gerhard Sandmann
    • 1
  1. 1.Biosynthesis Group, Institute of Molecular BiosciencesGoethe University FrankfurtFrankfurtGermany
  2. 2.School of Biological Sciences, Royal HollowayUniversity of LondonEghamUK
  3. 3.Department of Plant Production and Forestry ScienceUniversity of Lleida-Agrotecnio CenterLleidaSpain
  4. 4.Pilot Pflanzenöltechnologie Magdeburg e.V. (PPM)MagdeburgGermany
  5. 5.Institute of Fisheries EcologyJohann Heinrich von Thünen-InstituteAhrensburgGermany
  6. 6.Catalan Institute for Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations