Advertisement

Transgenic Research

, Volume 25, Issue 3, pp 329–343 | Cite as

The transgenic animal platform for biopharmaceutical production

  • L. R. Bertolini
  • H. Meade
  • C. R. Lazzarotto
  • L. T. Martins
  • K. C. Tavares
  • M. Bertolini
  • J. D. Murray
TARC X

Abstract

The recombinant production of therapeutic proteins for human diseases is currently the largest source of innovation in the pharmaceutical industry. The market growth has been the driving force on efforts for the development of new therapeutic proteins, in which transgenesis emerges as key component. The use of the transgenic animal platform offers attractive possibilities, residing on the low production costs allied to high productivity and quality of the recombinant proteins. Although many strategies have evolved over the past decades for the generation of transgenic founders, transgenesis in livestock animals generally faces some challenges, mainly due to random transgene integration and control over transgene copy number. But new developments in gene editing with CRISPR/Cas system promises to revolutionize the field for its simplicity and high efficiency. In addition, for the final approval of any given recombinant protein for animal or human use, the production and characterization of bioreactor founders and expression patterns and functionality of the proteins are technical part of the process, which also requires regulatory and administrative decisions, with a large emphasis on biosafety. The approval of two mammary gland-derived recombinant proteins for commercial and clinical use has boosted the interest for more efficient, safer and economic ways to generate transgenic founders to meet the increasing demand for biomedical proteins worldwide.

Keywords

Genetically modified organisms Genetic engineering Transgenesis Recombinant protein Biopharming Biopharmaceutic products Expression system platforms 

References

  1. Alba R, Bosch A, Chillon M (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12:S18–S27. doi: 10.1038/sj.gt.3302612 CrossRefPubMedGoogle Scholar
  2. Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overstrom EW, Echelard Y (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17(5):456–461. doi: 10.1038/8632 CrossRefPubMedGoogle Scholar
  3. Behboodi E, Memili E, Melican DT, Destrempes MM, Overton SA, Williams JL, Flanagan FA, Butler RE, Liem H, Chen LH, Meade HM, Gavin WG, Echelard Y (2004) Viable transgenic goats derived from skin cells. Transgenic Res 13(3):215–224. doi: 10.1023/B:TRAG.0000034620.59250.fd CrossRefPubMedGoogle Scholar
  4. Benihoud K, Yeh P, Perricaudet M (1999) Adenovirus vectors for gene delivery. Curr Opin Biotechnol 10(5):440–447. doi: 10.1016/S0958-1669(99)00007-5 CrossRefPubMedGoogle Scholar
  5. Biologic therapeutic drugs: technologies and global markets. http://search.proquest.com/docview/1636196616?accountid=10267. Accessed 15 Dec 2014
  6. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. doi: 10.1126/science.1178811 CrossRefPubMedGoogle Scholar
  7. Brondyk WH (2009) Selecting an appropriatemethod for expressing a recombinant protein. Methods Enzymol 463:131–147. doi: 10.1016/S0076-6879(09)63011-1 CrossRefPubMedGoogle Scholar
  8. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw BCA, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109(43):17382–17387. doi: 10.1073/pnas.1211446109 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chrenek P, Makarevich AV, Pivko J, Bulla J (2010) Transgenic farm animal production and application. Slovak J Anim Sci 43(2):45–49Google Scholar
  10. Clarck AJ (1998) The mammary gland as a bioreactor: expression, processing and production of recombinant proteins. J Mammary Gland Biol Neoplasia 39(3):337–349. doi: 10.1023/A:1018723712996 CrossRefGoogle Scholar
  11. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98(26):15191–15196. doi: 10.1073/pnas.261452898 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colman A (1996) Production of proteins in the milk of transgenic livestock: problems, solutions, and successes. Am J Clin Nutr 63(4):639–645Google Scholar
  13. Crystal RG (2014) Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 25(1):3–11. doi: 10.1089/hum.2013.2527 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Decker EL, Reski R (2007) Moss bioreactors producing improved biopharmaceuticals. Curr Opin Biotechnol 18(5):393–398. doi: 10.1016/j.copbio.2007.07.012 CrossRefPubMedGoogle Scholar
  15. Dove A (2002) Uncorking the biomanufacturing bottleneck. Nat Biotechnol 20:777–779. doi: 10.1038/nbt0802-777 CrossRefPubMedGoogle Scholar
  16. Dyck MK, Gagné D, Ouellet M, Sénéchal JF, Bélanger E, Lacroix D, Sirard MA, Pothier F (1999) Seminal vesicle production and secretion of growth hormone into seminal fluid. Nat Biotechnol 17(11):1087–1090. doi: 10.1038/15067 CrossRefPubMedGoogle Scholar
  17. Dyck MK, Lacroix D, Pothier F, Sirard MA (2003) Making recombinant proteins in animals different systems, different applications. Trends Biotechnol 21(9):394–399. doi: 10.1016/S0167-7799(03)00190-2 CrossRefPubMedGoogle Scholar
  18. Echelard Y, Ziomek CA, Meade HM (2006) Production of recombinant therapeutic proteins in the milk of transgenic animals. Biopharm International 19(8):32–46Google Scholar
  19. Echelard Y, Williams JL, Destrempes MM, Koster JA, Overton SA, Pollock DP, Rapiejko KT, Behboodi E, Masiello NC, Gavin WG, Pommer J, Van Patten SM, Faber DC, Cibelli JB, Meade HM (2009) Production of recombinant albumin by a herd of cloned transgenic cattle. Transgenic Res 18:361–376. doi: 10.1007/s11248-008-9229-9 CrossRefPubMedGoogle Scholar
  20. Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manavalan P, Ziomek C, Meade H, Mcpherson JM, Cole ES (1998) Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91(12):4561–4571PubMedGoogle Scholar
  21. Fan W, Plaut K, Bramley AJ, Barlow JW, Kerr DE (2002) Adenoviral-mediated transfer of a lysostaphin gene into the goat mammary gland. J Dairy Sci 85(7):1709–1716. doi: 10.3168/jds.S0022-0302(02)74244-6 CrossRefPubMedGoogle Scholar
  22. Farid S (2009) Economics drivers and trade-offs in antibody purification processes. BioPharm Int Suppl 22:38–42. doi: 10.1002/9780470444894.ch12 Google Scholar
  23. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17. doi: 10.1186/1475-2859-8-17 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Food and Drug Admninistration http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm405526.htm. Accessed 24 April 2015
  25. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76(1):106–110CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683CrossRefPubMedGoogle Scholar
  27. Han ZS, Li QW, Zhang ZY, Xiao B, Gao DW, Wu SY, Li J, Zhao HW, Jiang ZL, Hu JH (2007) High-level expression of human lactoferrin in the milk of goats by using replication-defective adenoviral vectors. Protein Expr Purif 53(1):225–231. doi: 10.1016/j.pep.2006.11.019 CrossRefPubMedGoogle Scholar
  28. Han ZS, Li QW, Zhang ZY, Yu YS, Xiao B, Wu SY, Jiang ZL, Zhao HW, Zhao R, Li J (2008) Adenoviral vector mediates high expression levels of human lactoferrin in the milk of rabbits. J Microbiol Biotechnol 18(1):153–159PubMedGoogle Scholar
  29. Han Z, Wu S, Li Q, Li J, Gao D, Li K, Liu ZW, Zhao H (2009) Efficient human growth hormone gene expression in the milk of non-transgenic goats. Folia Biol (Praha) 55(1):17–22Google Scholar
  30. Harvey BG, Leopold PL, Hackett NR, Grasso TM, Williams PM, Tucker AL, Kaner RJ, Ferris B, Gonda I, Sweeney TD, Ramalingam R, Kovesdi I, Shak S, Crystal RG (1999) Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus. J Clin Invest 104(9):1245–1255. doi: 10.1172/JCI7935 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harvey AJ, Speksnijder G, Baugh LR, Morris JA, Ivarie R (2002) Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol 20(4):396–399. doi: 10.1038/nbt0402-396 CrossRefPubMedGoogle Scholar
  32. Houdebine LM (1994) Production of pharmaceutical proteins from transgenic animals. J Biotechnol 34(3):269–287. doi: 10.1016/0168-1656(94)90062-0 CrossRefPubMedGoogle Scholar
  33. Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–312. doi: 10.1023/A:1008934912555 CrossRefPubMedGoogle Scholar
  34. Houdebine LM (2002) Antibody manufacture in transgenic animals and comparisons with other systems. Curr Opin Biotechnol 13:625–629. doi: 10.1016/S0958-1669(02)00362-2 CrossRefPubMedGoogle Scholar
  35. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microb 32(2):107–121. doi: 10.1016/j.cimid.2007.11.005 CrossRefGoogle Scholar
  36. Jayapal KP, Wlaschin KF, Hu WS, Yap MG (2007) Recombinant protein therapeutics from CHO cells—20 years and counting. Chem Eng Prog 103:40–47Google Scholar
  37. Jeng MH, Kao C, Sivaraman L, Krnacik S, Chung LW, Medina D, Conneely OM, O’Malley BW (1998) Reconstitution of estrogen-dependent transcriptional activation of an adenoviral target gene in select regions of the rat mammary gland. Endocrinology 139(6):2916–2925. doi: 10.1210/endo.139.6.6073 PubMedGoogle Scholar
  38. Keefer CL (2004) Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci 82–83:5–12. doi: 10.1016/j.anireprosci.2004.04.010 CrossRefPubMedGoogle Scholar
  39. Keefer CL, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau AA, Zhou JF, Leduc M, Downey BR, Lazaris A, Karatzas CN (2001) Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol Reprod 64(3):849–856. doi: 10.1095/biolreprod64.3.849 CrossRefPubMedGoogle Scholar
  40. Kerr DE, Liang F, Bondioli KR, Zhao H, Kreibich G, Wall RJ, Sun TT (1998) The bladder as a bioreactor: urotheliumproduction and secretion of growth hormone into urine. Nat Biotechnol 16:75–79. doi: 10.1038/nbt0198-75 CrossRefPubMedGoogle Scholar
  41. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930. doi: 10.1007/s00253-011-3758-5 CrossRefPubMedGoogle Scholar
  42. Kling J (2009) First US approval for a transgenic animal drug. Nat Biotechnol 27:302–304. doi: 10.1038/nbt0409-302 CrossRefPubMedGoogle Scholar
  43. Kong Q, Wu M, Huan Y, Zhang L, Liu H, Bou G, Luo Y, Mu Y, Liu Z (2009) Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS ONE 4(8):e6679. doi: 10.1371/journal.pone.0006679 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Leighton PA, Schusser B, Yi H, Glanville J, Harriman W (2015) A diverse repertoire of human immunoglobulin variable genes in a chicken B cell line is generated by both gene conversion and somatic hypermutation. Front Immunol 6:126. doi: 10.3389/fimmu.2015.00126 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 104(6):1771–1776. doi: 10.1073/pnas.0610401104 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lin J, Zhang Q, Zhu LQ, Yu QH, Yang Q (2014) The copy number and integration site analysis of IGF-1 transgenic goat. Int J Mol Med 34(3):900–910. doi: 10.3892/ijmm.2014.1841 PubMedGoogle Scholar
  47. Liu ZB, Han ZS, Li QW, Yang H, Lu WZ, Li WY (2010) Enhanced expression of adenovirus encoding rhEPO assisted by BAPTA. Anim Biotechnol 21(3):164–169. doi: 10.1080/10495391003617838 CrossRefPubMedGoogle Scholar
  48. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, Vogelstein B, He TC (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2(5):1236–1247. doi: 10.1038/nprot.2007.135 CrossRefPubMedGoogle Scholar
  49. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi: 10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Massoud M, Bischoff R, Dalemans W, Pointu H, Attal J, Schultz H, Clesse D, Stinnakre MG, Pavirani A, Houdebine LM (1991) Expression of active recombinant human α1-antitrypsin in transgenic rabbits. J Biotechnol 18(3):193–204. doi: 10.1016/0168-1656(91)90247-S CrossRefPubMedGoogle Scholar
  51. Matsushita H, Sano A, Wu H, Wang Z, Jiao J, Kasinathan P, Sullivan EJ, Kuroiwa Y (2015) Species-specific chromosome engineering greatly improves fully human polyclonal antibody production profile in cattle. PLoS ONE 10(6):e0130699CrossRefPubMedPubMedCentralGoogle Scholar
  52. Meade HM, Echelard Y, Ziomek CA, Young MW, Harvey M, Cole ES, Groet S, Smith TE, Curling JM (1998) Expression of recombinant proteins in the milk of transgenic animals. In: Fernandez JM, Hoeffler JP (eds) Gene expression systems: using nature for the art of expression, 1st edn. San Diego, pp 399–427Google Scholar
  53. Meng L, Wan Y, Sun Y, Zhang Y, Wang Z, Song Y, Wang F (2013) Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes. PLoS ONE 8(10):e77798. doi: 10.1371/journal.pone.0077798 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Murray JD, Mohamad-Fauzi N, Cooper CA, Maga EA (2010) Current status of transgenic animal research for human health application. Acta Sci Vet 38(Supl 2):627–632Google Scholar
  55. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C (2014) Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE 9(9):e106718. doi: 10.1371/journal.pone.0106718 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Niemann H, Kues WA (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci 79(3–4):291–317. doi: 10.1016/S0378-4320(03)00169-6 CrossRefPubMedGoogle Scholar
  57. Niimi T (2012) Recombinant protein production in the eukaryotic protozoan parasite Leishmania tarentolae: a review. Methods Mol Biol 824:307–315. doi: 10.1007/978-1-61779-433-9_15 CrossRefPubMedGoogle Scholar
  58. Palomares LA, Estrada-Mondaca S, Ramírez OT (2004) Production of recombinant proteins: challenges and solutions. Methods Mol Biol 267:15–52. doi: 10.1385/1-59259-774-2:015 PubMedGoogle Scholar
  59. Park TS, Lee HG, Moon JK, Lee HJ, Yoon JW, Yun BN, Kang SC, Kim J, Kim H, Han JY, Han BK (2015) Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter. FASEB J 29(6):2386–2396. doi: 10.1096/fj.14-264739 CrossRefPubMedGoogle Scholar
  60. Pinkert CA (2014) Transgenic animal technology: a laboratory handbook. 3rd edn. Elsevier, San Diego, p 714Google Scholar
  61. Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM (1999) Transgenic milk as a method for the production of recombinant antibodies. J Immunol Methods 231(1–2):147–157. doi: 10.1016/S0022-1759(99)00151-9 CrossRefPubMedGoogle Scholar
  62. Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28(6):910–918. doi: 10.1016/j.biotechadv.2010.08.006 CrossRefPubMedGoogle Scholar
  63. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. doi: 10.1038/nprot.2013.143 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rehbinder E, Engelhard M, Hagen K, Jørgensen RB, Pardo-Avellaneda R, Schnieke A, Thiele F (2009) Pharming. Promises and risks of biopharmaceuticals derived from genetically modified plants and animals. Ethics of Science and Technology Assessment. Springer, BerlinGoogle Scholar
  65. Rodríguez ES, Pose AG, Moltó MP, Espinoza AS, Zamora PA, Pedroso MS (2012) Biosafety evaluation of recombinant protein production in goat mammary gland using adenoviral vectors: preliminary study. Biotechnol J 7(8):1049–1053. doi: 10.1002/biot.201100455 CrossRefPubMedGoogle Scholar
  66. Rudolph NS (1999) Biopharmaceutical production in transgenic livestock. Trends Biotechnol 17(9):367–374. doi: 10.1016/S0167-7799(99)01341-4 CrossRefPubMedGoogle Scholar
  67. Rusconi S (1990) Transgenic regulation in laboratory animals. Experientia 47(9):866–877. doi: 10.1007/BF01929876 CrossRefGoogle Scholar
  68. Rutherford FRS (1911) The scattering of α and β particles by matter and the structure of the atom. Philos Mag Ser 6:669–688CrossRefGoogle Scholar
  69. Sanchez O, Toledo JR, Rodríguez MP, Castro FO (2004) Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats. J Biotechnol 114(1–2):89–97. doi: 10.1016/j.jbiotec.2004.06.009 CrossRefPubMedGoogle Scholar
  70. Sanchez O, Barrera M, Farnós O, Parra NC, Salgado ER, Saavedra PA, Meza CD, Rivas CI, Cortez-San Martín M, Toledo JR (2014) Effectiveness of the E2-classical swine fever virus recombinant vaccine produced and formulated within whey from genetically transformed goats. Clin Vaccine Immunol 21(12):1628–1634. doi: 10.1128/CVI.00416-14 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130–2133CrossRefPubMedGoogle Scholar
  72. Sharma A, Martin MJ, Okabe JF, Truglio RA, Dhanjal NK, Logan JS, Kumar R (1994) An isologous porcine promoter permits high level expression of human hemoglobin in transgenic swine. Nat Biotechnol 12(1):55–59. doi: 10.1038/nbt0194-55 CrossRefGoogle Scholar
  73. Silva MT, de Almeida RT, Gava CM, Galvão TF, da Silva EM, Santos VC, Ronchini MA, de Mesquita AM, Elias FT, d’Oliveira AL, Atallah AN (2012) Brazilian health technology assessment bulletin: editorial process, dissemination strategies, critical appraisal, and initial impact. Int J Technol Assess Health Care 28(1):65–69. doi: 10.1017/S0266462311000651 CrossRefPubMedGoogle Scholar
  74. Soler E, Houdebine LM (2007) Preparation of recombinant vaccines. Biotechnol Annu Rev 13:65–94CrossRefPubMedGoogle Scholar
  75. Swanson ME, Martin MJ, O’Donnell JK, Hoover K, Lago W, Huntress V, Parsons CT, Pinkert CA, Pilder S, Logan JS (1992) Production of functional human hemoglobin in transgenic swine. Nat Biotechnol 10(5):557–559. doi: 10.1038/nbt0592-557 CrossRefGoogle Scholar
  76. Tavares KCS, Dias ACO, Lazzarotto CR, Gaudencio Neto S, Carneiro IS, Ongaratto FL, Pinto AFM, Aguiar LH, Calderon CEM, Toledo JR, Castro FO, Santos DS, Chies JM, Bertolini M, Bertolini LR (2015) Transient expression of functional glucocerebrosidase for treatment of Gaucher’s disease in the goat mammary gland. Mol Biotechnol 58(1):47–55. doi: 10.1002/9780470444894.ch12 CrossRefGoogle Scholar
  77. Tillib SV, Privezentseva ME, Ivanova TI, Vasilev LF, Efimov GA, Gursky YG, Georgiev GP, Goldman IL, Sadchikova ER (2014) Single-domain antibody-based ligands for immunoaffinity separation of recombinant human lactoferrin from the goat lactoferrin of transgenic goat milk. J Chromatogr B 949–950:48–57. doi: 10.1016/j.jchromb.2013.12.034 CrossRefGoogle Scholar
  78. Toledo JR, Sánchez O, Montesino Seguí R, GarcíaY F, Rodríguez MP, Cremata JA (2005) Differential in vitro and in vivo glycosylation of human erythropoietin expressed in adenovirally transduced mouse mammary epithelial cells. Biochim Biophys Acta 1726(1):48–56. doi: 10.1016/j.bbagen.2005.06.007 CrossRefPubMedGoogle Scholar
  79. Toledo JR, Sánchez O, Seguí RM, García G, Montañez M, Zamora PA, Rodríguez MP, Cremata JA (2006) High expression level of recombinant human erythropoietin in the milk of non-transgenic goats. J Biotechnol 123(2):225–235. doi: 10.1016/j.jbiotec.2005.10.019 CrossRefPubMedGoogle Scholar
  80. Toledo JR, Sanchez O, Montesino R, Farnos O, Rodríguez MP, Alfonso P, Oramas N, Rodríguez E, Santana E, Vega E, Ganges L, Frias MT, Cremata J, Barrera M (2008) Highly protective E2–CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats. J Biotechnol 133(3):370–376. doi: 10.1016/j.jbiotec.2007.09.014 CrossRefPubMedGoogle Scholar
  81. Verma IM, Somia N (1997) Gene therapy—promises, problems and prospects. Nature 389(6648):239–242. doi: 10.1038/38410 CrossRefPubMedGoogle Scholar
  82. Wall RJ (1999) Biotechnology for the production of modified and innovative animal products: transgenic livestock bioreactors. Livest Prod Sci 59(2–3):243–255. doi: 10.1016/S0301-6226(99)00030-5 CrossRefGoogle Scholar
  83. Walsh G (2010) Biopharmaceutical benchmarks. Nat Biotechnol 28:917–924. doi: 10.1038/nbt0910-917 CrossRefPubMedGoogle Scholar
  84. Walsh G (2014) Biopharmaceutical benchmarks. Nat Biotechnol 32:992–1000. doi: 10.1038/nbt.3040 CrossRefPubMedGoogle Scholar
  85. Wang Y, Zhao S, Bai L, Fan J, Liu E (2013) Expression systems and species used for transgenic animal bioreactors. BioMed Res Int. doi: 10.1155/2013/580463 Google Scholar
  86. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30(5):1119–1139. doi: 10.1016/j.biotechadv.2011.09.012 CrossRefPubMedGoogle Scholar
  87. Watson JD, Crick FHC (1953a) A structure for deoxyribose nucleic acid. Nature 171:737–738. doi: 10.1038/171737a0 CrossRefPubMedGoogle Scholar
  88. Watson JD, Crick FHC (1953b) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967. doi: 10.1038/171964b0 CrossRefPubMedGoogle Scholar
  89. Whitelaw CB, Springbett AJ, Webster J, Clark J (1993) The majority of G0 transgenic mice are derived from mosaic embryos. Transgenic Res 2(1):29–32. doi: 10.1007/BF01977678 CrossRefPubMedGoogle Scholar
  90. Xiao B, Li QW, Feng B, Han ZS, Gao W, Li J, Li K, Zhao R, Jiang ZL, Hu JH, Zhi XB (2008) High-level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits. J Biosci Bioeng 105(4):327–334. doi: 10.1263/jbb.105.327 CrossRefPubMedGoogle Scholar
  91. Xiao B, Li Q, Feng B, Han Z, Gao D, Zhao R, Li J, Li K, Zhi X, Yang H, Liu Z (2009) Expression of recombinant human nerve growth factor beta in milk of goats by recombinant replication-defective adenovirus. Appl Biochem Biotechnol 157(3):357–366. doi: 10.1007/s12010-008-8346-5 CrossRefPubMedGoogle Scholar
  92. Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91(10):4407–4411CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang J, Tsukamoto T, Popnikolov N, Guzman RC, Chen X, Yang JH, Nandi S (1995) Adenoviral-mediated gene transfer into primary human and mouse mammary epithelial cells in vitro and in vivo. Cancer Lett 98(1):9–17. doi: 10.1016/S0304-3835(06)80004-2 CrossRefPubMedGoogle Scholar
  94. Yang H, Li QW, Han ZS, Hu JH, Li WY, Liu ZB (2009) Recombinant human antithrombin expressed in the milk of non-transgenic goats exhibits high efficiency on rat DIC model. J Thromb Thrombolysis 28(4):449–457. doi: 10.1007/s11239-009-0347-x CrossRefPubMedGoogle Scholar
  95. Yang H, Li Q, Han Z, Hu J (2012) High level expression of recombinant human antithrombin in the mammary gland of rabbits by adenoviral vectors infection. Anim Biotechnol 23(2):89–100. doi: 10.1080/10495398.2011.644647 CrossRefPubMedGoogle Scholar
  96. Yeh P, Perricaudet M (1997) Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J 11(8):615–623PubMedGoogle Scholar
  97. Yu JC, Liu S, Chen J, Xu X, Sha H, Zhang W, Xu F, Cheng G (2006) Functional disruption of the prion protein gene in cloned goats Guohua. J Gen Virol 87(4):1019–1027. doi: 10.1099/vir.0.81384-0 CrossRefPubMedGoogle Scholar
  98. Yu H, Chen J, Liu S, Zhang A, Xu X, Wang X, Lu P, Cheng G (2013) Large-scale production of functional human lysozyme in transgenic cloned goats. J Biotechnol 168(4):676–683. doi: 10.1016/j.jbiotec.2013.10.023 CrossRefPubMedGoogle Scholar
  99. Zhang YL, Wan YJ, Wang ZY, Qi WW, Zhou ZR, Huang R, Wang F (2010) Cell cycle distribution, cellular viability and mRNA expression of hGCase-gene-transfected cells in dairy goat. Cell Biol Int 34(6):679–685CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • L. R. Bertolini
    • 1
    • 3
  • H. Meade
    • 2
  • C. R. Lazzarotto
    • 3
  • L. T. Martins
    • 3
  • K. C. Tavares
    • 3
  • M. Bertolini
    • 3
    • 4
  • J. D. Murray
    • 5
  1. 1.Department of PharmacologyPontifical Catholic University of Rio Grande do Sul (PUC/RS)Porto AlegreBrazil
  2. 2.LFB, USAFraminghamUSA
  3. 3.Molecular and Developmental Biology Lab, Health Sciences CenterUniversity of Fortaleza (UNIFOR)FortalezaBrazil
  4. 4.Embryology and Reproductive Biotechnology Lab, School of Veterinary MedicineFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  5. 5.Transgenics Lab, Department of Animal ScienceUniversity of California, Davis (UC Davis)DavisUSA

Personalised recommendations