Transgenic Research

, Volume 25, Issue 2, pp 173–186 | Cite as

Over-expression of the cucumber expansin gene (Cs-EXPA1) in transgenic maize seed for cellulose deconstruction

  • Sangwoong Yoon
  • Shivakumar P. Devaiah
  • Seo-eun Choi
  • Jeff Bray
  • Robert Love
  • Jeffrey Lane
  • Carol Drees
  • John H. Howard
  • Elizabeth E. Hood
Original Paper

Abstract

Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.

Keywords

Cucumber expansin Over-expression Transgenic maize Expansin assay 

Supplementary material

11248_2015_9925_MOESM1_ESM.docx (795 kb)
Supplementary material 1 (DOCX 797 kb)

References

  1. An G, Mitra A, Choi HK et al (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1:115–122. doi:10.1105/tpc.1.1.115 PubMedCentralPubMedGoogle Scholar
  2. Anzai H, Yoneyama K, Yamaguchi I (1989) Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin. MGG Mol Gen Genet 219:492–494CrossRefGoogle Scholar
  3. Cho H-T, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:9783–9788. doi:10.1073/pnas.160276997 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Choi D, Lee Y, Cho H-T, Kende H (2003) Regulation of expansin gene expression affects growth and development in transgenic rice plants. Society 15:1386–1398. doi:10.1105/tpc.011965.1998 Google Scholar
  5. Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130. doi:10.1007/BF00392162 CrossRefGoogle Scholar
  6. Cosgrove DJ (2001) Enhancement of accessibility of cellulose by expansins. US Patent 6326470 B1. http://www.google.com/patents/US6326470
  7. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. doi:10.1038/nrm1746 CrossRefPubMedGoogle Scholar
  8. Cosgrove DJ, Li LC, Cho H-T et al (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444CrossRefPubMedGoogle Scholar
  9. Goh HH, Sloan J, Malinowski R, Fleming A (2014) Variable expansin expression in Arabidopsis leads to different growth responses. J Plant Physiol 171:329–339. doi:10.1016/j.jplph.2013.09.009 CrossRefPubMedGoogle Scholar
  10. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282CrossRefPubMedGoogle Scholar
  11. Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4:307–318. doi:10.1105/tpc.4.3.307 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Hood EE, Howard JA (2014) Commerl Plant Prod Recomb Protein Prod 68:15–26. doi:10.1007/978-3-662-43836-7 Google Scholar
  13. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301PubMedCentralPubMedGoogle Scholar
  14. Hood EE, Witcher DR, Maddock S et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306. doi:10.1023/A:1009676322162 CrossRefGoogle Scholar
  15. Hood EE, Bailey MR, Beifuss K et al (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140CrossRefPubMedGoogle Scholar
  16. Hood EE, Love R, Lane J et al (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719. doi:10.1111/j.1467-7652.2007.00275.x CrossRefPubMedGoogle Scholar
  17. Hood EE, Nelson P, Powell R (2011) Plant Biomass Conversion. Wiley, New YorkCrossRefGoogle Scholar
  18. Hood EE, Devaiah SP, Fake G et al (2012) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnol J 10:20–30. doi:10.1111/j.1467-7652.2011.00627.x CrossRefPubMedGoogle Scholar
  19. Hu Z, Song N, Xing J et al (2013) Overexpression of three TaEXPA1 homoeologous genes with distinct expression divergence in hexaploid wheat exhibit functional retention in Arabidopsis. PLoS ONE 8:e63667. doi:10.1371/journal.pone.0063667 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Ishida Y, Saito H, Ohta S et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750CrossRefPubMedGoogle Scholar
  21. Kang K, Wang S, Lai G et al (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:42. doi:10.1186/1472-6750-13-42 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087. doi:10.1002/bit.24370 CrossRefPubMedGoogle Scholar
  23. Kusnadi AR, Hood EE, Witcher DR et al (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14:149–155. doi:10.1021/bp970138u CrossRefPubMedGoogle Scholar
  24. Lee Y, Kende H (1997) Expression of β-expansins Is correlated with internodal elongation in deepwater rice. Plant Cell 9:1661–1671. doi:10.1105/tpc.9.9.1661 CrossRefGoogle Scholar
  25. Li F, Han Y, Feng Y et al (2013) Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol 163:281–291. doi:10.1016/j.jbiotec.2012.11.008 CrossRefPubMedGoogle Scholar
  26. Ma N, Wang Y, Qiu S et al (2013) Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One 8:e75997. doi:10.1371/journal.pone.0075997 PubMedCentralCrossRefPubMedGoogle Scholar
  27. McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91:6574–6578PubMedCentralCrossRefPubMedGoogle Scholar
  28. McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100PubMedCentralPubMedGoogle Scholar
  29. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433PubMedCentralCrossRefPubMedGoogle Scholar
  30. Medrano G, Reidy MJ, Liu J et al (2009) Recombinant Proteins From Plants. In: Faye L, Gomord V (eds) Recombinant proteins from plants: methods and protocols. Humana Press, Totowa, pp 51–67CrossRefGoogle Scholar
  31. Perlack RD, Stokes BJ (2011) U.S. Billion–Ton update: biomass supply for a bioenergy and bioproducts industry. http://energy.gov/eere/bioenergy/downloads/us-billion-ton-update-biomass-supply-bioenergy-and-bioproducts-industry
  32. Rogers JC (1985) Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260:3731–37388PubMedGoogle Scholar
  33. Rose JK, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94:5955–5960PubMedCentralCrossRefPubMedGoogle Scholar
  34. Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170. doi:10.1016/j.copbio.2014.12.008 CrossRefPubMedGoogle Scholar
  35. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242. doi:10.1186/gb-2005-6-12-242 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Sathitsuksanoh N, Zhu Z, Templeton N et al (2009) Saccharification of a Potential Bioenergy Crop, Phragmites australis (Common Reed), by Lignocellulose Fractionation Followed by Enzymatic Hydrolysis at Decreased Cellulase Loadings. Ind Eng Chem Res 48:6441–6447CrossRefGoogle Scholar
  37. Streatfield SJ, Jilka JM, Hood EE et al (2001) Plant-based vaccines: unique advantages. Vaccine 19:2742–2748CrossRefPubMedGoogle Scholar
  38. Uchimiya H, Iwata M, Nojiri C et al (1993) Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Nat Biotechnol 11:835–836CrossRefGoogle Scholar
  39. White J, Chang SY, Bibb MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res 18:1062PubMedCentralCrossRefPubMedGoogle Scholar
  40. Woodard SL, Mayor JM, Bailey MR et al (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130CrossRefPubMedGoogle Scholar
  41. Xu Q, Xu X, Shi Y et al (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE 9:1–9. doi:10.1371/journal.pone.0100792 Google Scholar
  42. Yennawar NH, Li L-C, Dudzinski DM et al (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A 103:14664–14671PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sangwoong Yoon
    • 1
    • 10
  • Shivakumar P. Devaiah
    • 2
  • Seo-eun Choi
    • 3
  • Jeff Bray
    • 4
  • Robert Love
    • 5
  • Jeffrey Lane
    • 6
  • Carol Drees
    • 7
  • John H. Howard
    • 8
  • Elizabeth E. Hood
    • 9
  1. 1.Arkansas Biosciences InstituteState UniversityUSA
  2. 2.Department of Biological SciencesEast Tennessee State UniversityJohnson CityUSA
  3. 3.Department of MathematicsArkansas State UniversityState UniversityUSA
  4. 4.Department of Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationUSA
  5. 5.BryanUSA
  6. 6.Hannah EngineeringCollege StationUSA
  7. 7.College StationUSA
  8. 8.Applied Biotechnology InstituteSan Luis ObispoUSA
  9. 9.College of Agriculture and Technology and Arkansas Biosciences InstituteArkansas State UniversityState UniversityUSA
  10. 10.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations