Transgenic Research

, Volume 25, Issue 1, pp 33–44 | Cite as

The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize

  • Yan-Yan Guo
  • Jun-Ce Tian
  • Wang-Peng Shi
  • Xue-Hui Dong
  • Jörg Romeis
  • Steven E. Naranjo
  • Richard L. Hellmich
  • Anthony M. Shelton
Original Paper


Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control services, are required to be addressed in an environmental risk assessment. Amblyseius andersoni (Acari: Phytoseiidae) is a cosmopolitan predator of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), a significant pest of cotton and maize. Tri-trophic studies were conducted to assess the potential effects of Cry1Ac/Cry2Ab cotton and Cry1F maize on life history parameters (survival rate, development time, fecundity and egg hatching rate) of A. andersoni. We confirmed that these Bt crops have no effects on the biology of T. urticae and, in turn, that there were no differences in any of the life history parameters of A. andersoni when it fed on T. urticae feeding on Cry1Ac/Cry2Ab or non-Bt cotton and Cry1F or non-Bt maize. Use of a susceptible insect assay demonstrated that T. urticae contained biologically active Cry proteins. Cry proteins concentrations declined greatly as they moved from plants to herbivores to predators and protein concentration did not appear to be related to mite density. Free-choice experiments revealed that A. andersoni had no preference for Cry1Ac/Cry2Ab cotton or Cry1F maize-reared T. urticae compared with those reared on non-Bt cotton or maize. Collectively these results provide strong evidence that these crops can complement other integrated pest management tactics including biological control.


Tri-trophic exposure Cry1Ac Cry2Ab Cry1F Environmental risk assessment Biological control 



This project was supported by the China Scholarship Council and the Biotechnology Risk Assessment Program Competitive Grant No. 2010-33522-21772 from the USDA, National Institute of Food and Agriculture. We thank H. Collins, M. Cheung and D. Olmstead for technical assistance and J. Nyrop and K. Wentworth for advice and supplying the initial colony of T. urticae.

Supplementary material

11248_2015_9917_MOESM1_ESM.docx (319 kb)
Supplementary material 1 (DOCX 319 kb)


  1. Adamczyk JJ, Sumerford DV (2001) Potential factors impacting season-long expression of Cry1Ac in 13 commercial varieties of Bollgard cotton. J Insect Sci 1:13CrossRefPubMedCentralPubMedGoogle Scholar
  2. Álvarez-Alfageme F, Ferry N, Castanera P, Ortego F, Gatehouse AMR (2008) Prey mediated effects of Bt maize on fitness and digestive physiology of the red spider mite predator Stethorus punctillum Weise (Coleoptera: Coccinellidae). Transgenic Res 17:943–954CrossRefPubMedGoogle Scholar
  3. Álvarez-Alfageme F, Bigler F, Romeis J (2011) Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design. Transgenic Res 20:467–479CrossRefPubMedCentralPubMedGoogle Scholar
  4. Amano H, Chant DA (1977) Life-history and reproduction of 2 species of predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae). Can J Zool 55:1978–1983CrossRefGoogle Scholar
  5. Amano H, Chant DA (1978) Some factors affecting reproduction and sex-ratios in 2 species of predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae). Can J Zool 56:1593–1607CrossRefGoogle Scholar
  6. Archer TL, Bynum ED (1993) Yield loss to maize from feeding by the Banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 17:895–903CrossRefGoogle Scholar
  7. Auger P, Migeon A, Ueckermann EA, Tiedt L, Navajas M (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): review and new data. Acarologia 53:383–415CrossRefGoogle Scholar
  8. Bai YY, Jiang MX, Cheng JA, Wang D (2006) Effects of CrylAb toxin on Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) through its prey, Nilaparvata lugens (Homoptera: Delphacidae), feeding on transgenic Bt rice. Environ Entomol 35:1130–1136CrossRefGoogle Scholar
  9. Benedict JH, Sachs ES, Altman DW, Deaton WR, Kohel RJ, Berberich SA (1996) Field performance of cottons expressing transgenic Cry1A insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 89:230–238CrossRefGoogle Scholar
  10. Bernal CC, Aguda RM, Cohen MB (2002) Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomol Exp Appl 102:21–28CrossRefGoogle Scholar
  11. Boodley JW, Sheldrake RJ (1977) Cornell peat-lite mixes for commercial plant growing. Cornell Information Bulletin 43, Ithaca, New YorkGoogle Scholar
  12. Chen M, Zhao JZ, Collins HL, Earle ED, Cao J, Shelton AM (2008) A critical assessment of the effects of Bt transgenic plants on parasitoids. PLoS One 3:e2284CrossRefPubMedCentralPubMedGoogle Scholar
  13. Comas C, Lumbierres B, Pons X, Albajes R (2014) No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res 23:135–143CrossRefPubMedGoogle Scholar
  14. Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II: overview of ecological risk assessment. Plant J 33:19–46CrossRefPubMedGoogle Scholar
  15. Dong HZ, Li WJ (2007) Variability of endotoxin expression in Bt transgenic cotton. J Agron Crop Sci 193:21–29CrossRefGoogle Scholar
  16. Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447CrossRefGoogle Scholar
  17. Dutton A, Romeis J, Bigler F (2003) Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. Biocontrol 48:611–636CrossRefGoogle Scholar
  18. Esteves AB, de Oliveira JV, Torres JB, Gondim MGC (2010) Compared biology and behavior of Tetranychus urticae Koch (Acari: Tetranychidae) and Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae) on BollGard (TM) and non-transgenic isoline cotton. Neotrop Entomol 39:338–344CrossRefGoogle Scholar
  19. Fernandez-Maizeejo J, Wechsler S, Livingston M, Mitchell L (2014) Genetically engineered crops in the United States. US Department of Agriculture Economic Research Service.
  20. Ferry N, Mulligan EA, Stewart CN, Tabashnik BE, Port GR, Gatehouse AMR (2006) Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle. Transgenic Res 15:501–514CrossRefPubMedGoogle Scholar
  21. García M, Ortego F, Castañera P, Farinós GP (2010) Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria. Biol Control 55:225–233CrossRefGoogle Scholar
  22. García M, Ortego F, Castañera P, Farinós GP (2012) Assessment of prey-mediated effects of the coleopteran-specific toxin Cry3Bb1 on the generalist predator Atheta coriaria (Coleoptera: Staphylinidae). Bull Entomol Res 102:293–302CrossRefPubMedGoogle Scholar
  23. Garcia-Alonso M, Jacobs E, Raybould A, Nickson TE, Sowig P, Willekens H, Van der Kouwe P, Layton R, Amijee F, Fuentes AM, Tencalla F (2006) A tiered system for assessing the risk of genetically modified plants to non-target organisms. Environ Biosaf Res 5:57–65CrossRefGoogle Scholar
  24. Hellmich RL, Albajes R, Bergvinson D, Prasifka JR, Wang Z-Y, Weiss MJ (2008) The present and future role of insect-resistant genetically modified maize in IPM. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM programs. Springer, New York, pp 119–158CrossRefGoogle Scholar
  25. Jalali SK, Yadavalli L, Ojha R, Kumar P, Sulaikhabeevi SB, Sharma R, Nair R, Kadanur RC, Kamath SP, Komarlingam MS (2014) Baseline sensitivity of maize borers in India to the Bacillus thuringiensis insecticidal proteins Cry1A.105 and Cry2Ab2. Pest Manag Sci. doi: 10.1002/ps.3888 PubMedGoogle Scholar
  26. James C (2014) Global status of commercialized biotech/GM crops: 2014 ISAAA Brief No. 49. ISAAA, Ithaca, NYGoogle Scholar
  27. Kennedy GG (2008) Integration of insect-resistant genetically modified crops within IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM Programs. Springer, New York, pp 1–26CrossRefGoogle Scholar
  28. Lawo NC, Wäckers FL, Romeis J (2010) Characterizing indirect prey-quality mediated effects of a Bt crop on predatory larvae of the green lacewing, Chrysoperla carnea. J Insect Physiol 56:1702–1710CrossRefPubMedGoogle Scholar
  29. Li YH, Romeis J (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biol Control 53:337–344CrossRefGoogle Scholar
  30. Li YH, Romeis J, Wang P, Peng YF, Shelton AM (2011) A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab. PLoS One 6:e22185CrossRefPubMedCentralPubMedGoogle Scholar
  31. Liu XX, Chen M, Collins HL, Onstad DW, Roush RT, Zhang Q, Earle ED, Shelton AM (2014) Natural enemies delay insect resistance to Bt crops. PLoS One 9:e90366CrossRefPubMedCentralPubMedGoogle Scholar
  32. Lövei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306CrossRefPubMedGoogle Scholar
  33. Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365CrossRefPubMedGoogle Scholar
  34. Luo Z, Dong HH, Li WJ, Ming Z, Zhu YQ (2008) Individual and combined effects of salinity and waterlogging on Cry1Ac expression and insecticidal efficacy of Bt cotton. Crop Prot 27:1485–1490CrossRefGoogle Scholar
  35. McMurtry J (1982) The use of phytoseiids for biological control: progress and future prospects. Recent advances in knowledge of the Phytoseiidae. University of California, Berkeley, pp 23–48Google Scholar
  36. Meissle M, Romeis J (2009a) The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotechnol J 7:645–656CrossRefGoogle Scholar
  37. Meissle M, Romeis J (2009b) Insecticidal activity of Cry3Bb1 expressed in Bt maize on larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Entomol Exp Appl 131:308–319CrossRefGoogle Scholar
  38. Mészáros A, Beuzelin JM, Stout MJ, Bommireddy PL, Riggio RM, Leonard RB (2011) Jasmonic acid-induced resistance to the fall armyworm, Spodoptera frugiperda, in conventional and transgenic cottons expressing Bacillus thuringiensis insecticidal proteins. Entomol Exp Appl 144:226–237CrossRefGoogle Scholar
  39. Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev Perspect Agric Vet Sci Nutrit Nat Resour 4(011):1–23Google Scholar
  40. Naranjo SE, Ruberson JR, Sharma HC, Wilson L, Wu KM (2008) The present and future role of insect-resistant GM cotton in IPM. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM programs. Springer, New York, pp 159–194CrossRefGoogle Scholar
  41. Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economics of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645CrossRefPubMedGoogle Scholar
  42. Nguyen HT, Jehle JA (2007) Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810. J Plant Dis Prot 114:82–87Google Scholar
  43. Niu Y, Meagher RL Jr, Yang F, Huang F (2013) Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes. Florida Entomol 96:701–713CrossRefGoogle Scholar
  44. Obrist LB, Dutton A, Albajes R, Bigler F (2006a) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–154CrossRefGoogle Scholar
  45. Obrist LB, Dutton A, Romeis J, Bigler F (2006b) Biological activity of Cry1Ab toxin expressed by Bt maize following ingestion by herbivorous arthropods and exposure of the predator Chrysoperla carnea. Biocontrol 51:31–48CrossRefGoogle Scholar
  46. Olsen KM, Daly JC, Finnegan EJ, Mahon RJ (2005) Changes in Cry1Ac Bt transgenic cotton in response to environmental factors: temperature and insect damage. J Econ Entomol 98:1382–1390Google Scholar
  47. Onstad DW, Liu XX, Chen M, Roush R, Shelton AM (2013) Modeling the integration of parasitoid, insecticide and transgenic insecticidal crops for the long-term control of an insect pest. J Econ Entomol 106:1103–1111CrossRefPubMedGoogle Scholar
  48. Prager SM, Martini X, Guvvala H, Nansen C, Lundgren J (2014) Spider mite infestations reduce Bacillus thuringiensis toxin concentration in corn leaves and predators avoid spider mites that have fed on Bacillus thuringiensis corn. Ann Appl Biol 165:108–116CrossRefGoogle Scholar
  49. Reddall A, Sadras VO, Wilson LJ, Gregg PC (2004) Physiological responses of cotton to two-spotted spider mite damage. Crop Sci 44:835–846CrossRefGoogle Scholar
  50. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71CrossRefPubMedGoogle Scholar
  51. Romeis J, van Driesche RG, Barratt BIP, Bigler F (2008a) Insect-resistant transgenic crops and biological control. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM programs. Springer, Nwe York, pp 87–117CrossRefGoogle Scholar
  52. Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkins MC, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008b) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208CrossRefPubMedGoogle Scholar
  53. Romeis J, McLean MA, Shelton AM (2013) When bad science makes good headlines: the case of Bt crops. Nat Biotechnol 37:386–387CrossRefGoogle Scholar
  54. Shelton AM, Cooley RJ, Kroening MK, Wilsey WT, Eigenbrode SD (1991) Comparative analysis of two rearing procedures for diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Entomol Sci 26:17–26Google Scholar
  55. Shelton AM, Naranjo SE, Romeis J, Hellmich RL, Wolt JD, Federici BA, Albajes R, Bigler F, Burgess EPJ, Dively GP, Gatehouse AMR, Malone LA, Roush RT, Sears MK, Sehnal F (2009a) Setting the record straight: a rebuttal to an erroneous analysis on transgenic insecticidal crops and natural enemies. Transgenic Res 18:317–322CrossRefPubMedGoogle Scholar
  56. Shelton AM, Naranjo SE, Romeis J, Hellmich RL, Wolt JD, Federici BA, Albajes R, Bigler F, Burgess EPJ, Dively GP, Gatehouse AMR, Malone LA, Roush RT, Sears MK, Sehnal F, Ferry N, Bell HA et al (2009b) Appropriate analytical methods are necessary to assess nontarget effects of insecticidal proteins in GM crops through meta-analysis (Response to Andow et al. 2009). Environ Entomol 38:1533–1538CrossRefPubMedGoogle Scholar
  57. Shelton AM, Naranjo SE, Romeis J, Hellmich RL (2012) Errors in logic and statistics plague a meta-analysis (response to Andow and Lovei 2012). Environ Entomol 41:1047–1049PubMedGoogle Scholar
  58. SPSS (1988) SPSS user’s guide. SPSS Inc, ChicagoGoogle Scholar
  59. Su HH, Tian JC, Naranjo SE, Romeis J, Hellmich RL, Shelton AM (2015) Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii. J Appl Entomol 139:23–30CrossRefGoogle Scholar
  60. Tian JC, Collins HL, Romeis J, Naranjo SE, Hellmich RL, Shelton AM (2012) Using field-evolved resistance to Cry1F maize in a lepidopteran pest to demonstrate no adverse effects of Cry1F on one of its major predators. Transgenic Res 21:1303–1310CrossRefPubMedCentralPubMedGoogle Scholar
  61. Tian JC, Wang XP, Long LP, Romeis J, Naranjo SE, Hellmich RL, Wang P, Earle ED, Shelton AM (2013) Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris. PLoS One 8:e60125CrossRefPubMedCentralPubMedGoogle Scholar
  62. Tian JC, Long LP, Wang XP, Naranjo SE, Romeis J, Hellmich RL, Wang P, Shelton AM (2014a) Using resistant prey demonstrates that Bt plants producing Cry1Ac, Cry2Ab, and Cry1F have no negative effects on Geocoris punctipes and Orius insidiosus. Environ Entomol 43:242–251CrossRefPubMedGoogle Scholar
  63. Tian JC, Wang XP, Long LP, Romeis J, Naranjo SE, Hellmich RL, Shelton AM (2014b) Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris. Transgenic Res 23:257–264CrossRefPubMedGoogle Scholar
  64. Torres JB, Ruberson JR (2008) Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Res 17:345–354CrossRefPubMedGoogle Scholar
  65. Tsolakis H, Ragusa di Chiara S (1994) Biological and life table parameters of Amblyseius andersoni (Chant) (Parasitiformes, Phytoseiidae) on different kinds of food substances. Phytophaga (Palermo) 5:21–28Google Scholar
  66. van der Linden A (2004) Amblyseius andersoni Chant (Acari: Phytoseiidae), a successful predatory mite on Rosa spp. Commun Agric Appl Biol Sci 69:157–163PubMedGoogle Scholar
  67. Wilson LJ (1993) Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. J Econ Entomol 86:566–585CrossRefGoogle Scholar
  68. Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3:e2118CrossRefPubMedCentralPubMedGoogle Scholar
  69. Zemková Rovensaká G, Zemek R, Schmidet JEU, Hilbeck A (2005) Altered host plant preference of Tetranychus urticae and prey preference of its predator Phytoseiulus persimilis (Acari: Tetranychidae, Phytoseiidae) on transgenic Cry3Bb-eggplants. Biol Control 33:293–300CrossRefGoogle Scholar
  70. Zhou GS, Zhou FC, Xie YM, Feng CN, Yang YZ (2009) Effects of temperature stress on Bt insecticidal protein expression in Bt transgenic cotton leaves and death rate of cotton bollworm. Cotton Sci 21:302–306Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yan-Yan Guo
    • 1
    • 2
  • Jun-Ce Tian
    • 3
  • Wang-Peng Shi
    • 2
  • Xue-Hui Dong
    • 4
  • Jörg Romeis
    • 5
  • Steven E. Naranjo
    • 6
  • Richard L. Hellmich
    • 7
    • 8
  • Anthony M. Shelton
    • 1
  1. 1.Department of EntomologyCornell University, New York State Agricultural Experiment Station (NYSAES)GenevaUSA
  2. 2.Department of EntomologyChina Agricultural UniversityBeijingChina
  3. 3.State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
  4. 4.Department of Agriculture ScienceChina Agricultural UniversityBeijingChina
  5. 5.Agroscope, Institute for Sustainability Sciences ISSZurichSwitzerland
  6. 6.Arid-Land Agricultural Research CenterUSDA-ARSMaricopaUSA
  7. 7.Corn Insects and Crop Genetics Research UnitUSDA-ARSAmesUSA
  8. 8.Department of EntomologyIowa State UniversityAmesUSA

Personalised recommendations