Advertisement

Transgenic Research

, Volume 24, Issue 1, pp 31–41 | Cite as

Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis

  • M. Crispo
  • M. Vilariño
  • P. C. dos Santos-Neto
  • R. Núñez-Olivera
  • F. Cuadro
  • N. Barrera
  • A. P. Mulet
  • T. H. Nguyen
  • I. Anegón
  • A. Menchaca
Original Paper

Abstract

Lentiviral technology has been recently proposed to generate transgenic farm animals more efficiently and easier than traditional techniques. The objective was to evaluate several parameters of lambs obtained by lentiviral transgenesis in comparison with non-transgenic counterparts. In vitro produced embryos were microinjected (TG group) at two-cell stage with a lentiviral construct containing enhanced green fluorescent protein (eGFP) gene, while embryos produced by in vitro fertilization (IVF group) or intrauterine insemination (IUI group) were not microinjected. Microinjection technique efficiently generated eight-cell transgenic embryos (97.4 %; 114/117). Development rate on day 5 after fertilization was similar for TG (39.3 %, 46/117) and IVF embryos (39.6 %, 44/111). Pregnancy rate was detected in 50.0 % (6/12) of recipient ewes with TG embryos, in 46.7 % (7/15) with IVF embryos, and in 65.0 % (13/20) of IUI ewes (P = NS). Nine lambs were born in TG group, six lambs in IVF group, and 16 lambs in IUI group. All TG lambs (9/9) were GFP positive to real-time PCR and eight (88.9 %) showed a strong and evident GFP expression in mucosae, eyes and keratin tissues. Fetal growth monitored every 15 day by ultrasonography did not show significant differences. Transgenic lambs neither differ in morphometric variables in comparison with non transgenic IVF lambs within 3 months after birth. Transmission of the transgene to the progeny was observed in green fluorescent embryos produced by IVF using semen from the TG founder lambs. In conclusion, this study demonstrates the high efficiency of lentiviral technology to produce transgenic sheep, with no clinic differences in comparison with non transgenic lambs.

Keywords

Genetic modification Transgenic Micromanipulation Ovine Green fluorescent protein Lentivirus 

Notes

Acknowledgments

The authors wish to thank Alison Creneguy for the technical labor in the production of recombinant lentivirus, Robert Wijma for technical help during in vitro embryo production, Sofía Ramírez for technical assistance during fetal measurement, and Sabrina Olmos, Fatima Rodríguez and Santiago Machado for nursing and handling of newborns. This project was financially supported by ANII PR_FSA_2009_1_1333 grant, FOCEM (MERCOSUR Structural Convergence Fund), COF 03/11 and received additional support by PEDECIBA (UdelaR) and Union Agriculture Group. MC, MV, IA and AM are fellows of Sistema Nacional de Investigadores (SNI).

Ethical standards

All procedures that include animal handling were approved by the Animal Care Committee of the Fundación IRAUy and certified by the National Council of Animal Care of Uruguay and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to their inclusion in the study.

References

  1. Andreeva LE, Serova IA (1992) The effect of the micromanipulations used for transgenesis on mouse development. Ontogenez 23(6):637–643PubMedGoogle Scholar
  2. Behboodi E, Anderson GB, BonDurant RH, Cargill SL, Kreuscher BR, Medrano JF, Murray JD (1995) Birth of large calves that developed from in vitro-derived bovine embryos. Theriogenology 44(2):227–232PubMedCrossRefGoogle Scholar
  3. Chavatte-Palmer P, Remy D, Cordonnier N, Richard C, Issenman H, Laigre P, Heyman Y, Mialot JP (2004) Health status of cloned cattle at different ages. Cloning Stem Cells 6(2):94–100PubMedCrossRefGoogle Scholar
  4. Cognie Y, Poulin N, Locatelli Y, Mermillod P (2004) State-of-the-art production, conservation and transfer of in vitro-produced embryos in small ruminants. Reprod Fertil Dev 16(4):437–445PubMedCrossRefGoogle Scholar
  5. Cohen J (1991) Assisted hatching of human embryos. J In Vitro Fert Embryo Transf 8(4):179–190PubMedCrossRefGoogle Scholar
  6. Cornetta K, Tessanne K, Long C, Yao J, Satterfield C, Westhusin M (2013) Transgenic sheep generated by lentiviral vectors: safety and integration analysis of surrogates and their offspring. Transgenic Res 22(4):737–745PubMedCentralPubMedCrossRefGoogle Scholar
  7. Deng S, Li G, Zhang J, Zhang X, Cui M, Guo Y, Liu G, Li G, Feng J, Lian Z (2013) Transgenic cloned sheep overexpressing ovine toll-like receptor 4. Theriogenology 80(1):50–57PubMedCrossRefGoogle Scholar
  8. Dropulic B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22(6):649–657PubMedCrossRefGoogle Scholar
  9. Farin PW, Farin CE (1995) Transfer of bovine embryos produced in vivo or in vitro: survival and fetal development. Biol Reprod 52(3):676–682PubMedCrossRefGoogle Scholar
  10. Farin PW, Crosier AE, Farin CE (2001) Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology 55(1):151–170PubMedCrossRefGoogle Scholar
  11. Farin PW, Piedrahita JA, Farin CE (2006) Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65(1):178–191PubMedCrossRefGoogle Scholar
  12. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25(2):217–222PubMedCrossRefGoogle Scholar
  13. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021):680–683PubMedCrossRefGoogle Scholar
  14. He X, Li H, Zhou Z, Zhao Z, Li W (2012) Production of brown/yellow patches in the SLC7A11 transgenic sheep via testicular injection of transgene. J Genet Genomics 39(6):281–285PubMedCrossRefGoogle Scholar
  15. Hejnar JA, Hájková P, Plachí JA, Elleder D, Stepanets V, Svoboda J (2001) CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. PNAS 98(2):565–569PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4(11):1054–1060PubMedCentralPubMedCrossRefGoogle Scholar
  17. Holm P, Walker SK, Seamark RF (1996) Embryo viability, duration of gestation and birth weight in sheep after transfer of in vitro matured and in vitro fertilized zygotes cultured in vitro or in vivo. J Reprod Fertil 107(2):175–181PubMedCrossRefGoogle Scholar
  18. Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA 73(4):1260–1264PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kong Q, Wu M, Huan Y, Zhang L, Liu H, Bou G, Luo Y, Mu Y, Liu Z (2009) Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One 4(8):e6679PubMedCentralPubMedCrossRefGoogle Scholar
  20. Krisher R, Gibbons J, Canseco R, Johnson J, Russell C, Notter DR, Velander W, Gwazdauskas FC (1994) Influence of time of gene microinjection on development and DNA detection frequency in bovine embryos. Trans Res 3(4):226–231CrossRefGoogle Scholar
  21. Kues WA, Niemann H (2011) Advances in farm animal transgenesis. Prev Vet Med 102(2):146–156PubMedCrossRefGoogle Scholar
  22. Kvell K, Czompoly T, Hiripi L, Balogh P, Kobor J, Bodrogi L, Pongracz JE, Ritchie WA, Bosze Z (2010) Characterisation of eGFP-transgenic BALB/c mouse strain established by lentiviral transgenesis. Transgenic Res 19(1):105–112PubMedCrossRefGoogle Scholar
  23. Lillico S, Vasey D, King T, Whitelaw B (2011) Lentiviral transgenesis in livestock. Transgenic Res 20(3):441–442PubMedCrossRefGoogle Scholar
  24. Liu C, Wang L, Li W, Zhang X, Tian Y, Zhang N, He S, Chen T, Huang J, Liu M (2013) Highly efficient generation of transgenic sheep by lentivirus accompanying the alteration of methylation status. PLoS One 8(1):e54614PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lois C (2011) Generation of Transgenic Animals with Lentiviral Vectors. In: Pease S, Saunders TL (eds) Advanced Protocols for Animal Transgenesis. Springer Protocols Handbooks, Springer, Berlin, pp 181–211CrossRefGoogle Scholar
  26. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872PubMedCrossRefGoogle Scholar
  27. Lonergan P, Fair T (2008) In vitro-produced bovine embryos: dealing with the warts. Theriogenology 69(1):17–22PubMedCrossRefGoogle Scholar
  28. McEvoy TG, Robinson JJ, Sinclair KD (2001) Developmental consequences of embryo and cell manipulation in mice and farm animals. Reproduction 122(4):507–518PubMedCrossRefGoogle Scholar
  29. Menchaca A, Rubianes E (2004) New treatments associated with timed artificial insemination in small ruminants. Reprod Fertil Dev 16(4):403–413PubMedCrossRefGoogle Scholar
  30. Miao K, Guo M, An L, Xu XL, Wu H, Wang D, Wu ZH, Tian JH (2011) A new method to efficiently produce transgenic embryos and mice from low-titer lentiviral vectors. Transgenic Res 20(2):357–363PubMedCrossRefGoogle Scholar
  31. Nakagawa T, Hoogenraad CC (2011) Lentiviral transgenesis. In: Hofker MH, van Deursen J (eds) Transgenic Mouse Methods and Protocols, vol 693. Humana Press, NY, pp 117–142CrossRefGoogle Scholar
  32. Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31(2):159–173PubMedCrossRefGoogle Scholar
  33. Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL (1986) Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 25(4):591–600PubMedCrossRefGoogle Scholar
  34. Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13(6):513–522PubMedCrossRefGoogle Scholar
  35. Popova EA, Krivokharchenko AS, Vil’yanovich LI (2002) In vitro development of murine embryos using different types of microinjections. Russ J Dev Biol 33(2):81–84CrossRefGoogle Scholar
  36. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233PubMedCrossRefGoogle Scholar
  37. Reichenbach M, Lim T, Reichenbach HD, Guengoer T, Habermann FA, Matthiesen M, Hofmann A, Weber F, Zerbe H, Grupp T, Sinowatz F, Pfeifer A, Wolf E (2010) Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology. Transgenic Res 19(4):549–556PubMedCrossRefGoogle Scholar
  38. Remy S, Nguyen TH, Menoret S, Tesson L, Usal C, Anegon I (2010a) The use of lentiviral vectors to obtain transgenic rats. In: Anegon I (ed) Rat Genomics, vol 597. Humana Press, NY, pp 109–125CrossRefGoogle Scholar
  39. Remy S, Tesson L, Usal C, Menoret S, Bonnamain V, Nerriere-Daguin V, Rossignol J, Boyer C, Nguyen TH, Naveilhan P, Lescaudron L, Anegon I (2010b) New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy. Transgenic Res 19(5):745–763PubMedCrossRefGoogle Scholar
  40. Ritchie WA, King T, Neil C, Carlisle AJ, Lillico S, McLachlan G, Whitelaw CB (2009) Transgenic sheep designed for transplantation studies. Mol Reprod Dev 76(1):61–64PubMedCrossRefGoogle Scholar
  41. Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8(6):483–488PubMedCentralPubMedCrossRefGoogle Scholar
  42. Tian Y, Li W, Wang L, Liu C, Lin J, Zhang X, Zhang N, He S, Huang J, Jia B, Liu M (2013) Expression of 2A peptide mediated tri-fluorescent protein genes were regulated by epigenetics in transgenic sheep. Biochem Biophys Res Commun 434(3):681–687PubMedCrossRefGoogle Scholar
  43. Vajta G, Gjerris M (2006) Science and technology of farm animal cloning: state of the art. Anim Reprod Sci 92(3–4):211–230PubMedCrossRefGoogle Scholar
  44. van Wagtendonk-de Leeuw AM, Aerts BJG, den Daas JHG (1998) Abnormal offspring following in vitro production of bovine preimplantation embryos: a field study. Theriogenology 49(5):883–894PubMedCrossRefGoogle Scholar
  45. van Wagtendonk-de Leeuw AM, Mullaart E, de Roos APW, Merton JS, den Daas JHG, Kemp B, de Ruigh L (2000) Effects of different reproduction techniques: AI, moet or IVP, on health and welfare of bovine offspring. Theriogenology 53(2):575–597PubMedCrossRefGoogle Scholar
  46. Walker SK, Hartwich KM, Seamark RF (1996) The production of unusually large offspring following embryo manipulation: concepts and challenges. Theriogenology 45(1):111–120CrossRefGoogle Scholar
  47. Whitelaw CB, Lillico SG, King T (2008) Production of transgenic farm animals by viral vector-mediated gene transfer. Reprod Domest Anim 43(2):355–358PubMedCrossRefGoogle Scholar
  48. Wilson JM, Williams JD, Bondioli KR, Looney CR, Westhusin ME, McCalla DF (1995) Comparison of birth weight and growth characteristics of bovine calves produced by nuclear transfer (cloning), embryo transfer and natural mating. Anim Reprod Sci 38(1–2):73–83CrossRefGoogle Scholar
  49. Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3(3):155–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Crispo
    • 1
  • M. Vilariño
    • 2
  • P. C. dos Santos-Neto
    • 2
  • R. Núñez-Olivera
    • 2
  • F. Cuadro
    • 2
  • N. Barrera
    • 2
  • A. P. Mulet
    • 1
  • T. H. Nguyen
    • 3
  • I. Anegón
    • 3
  • A. Menchaca
    • 2
  1. 1.Unidad de Animales Transgénicos y de Experimentación (UATE)Institut Pasteur de MontevideoMontevideoUruguay
  2. 2.Instituto de Reproducción Animal Uruguay, Fundación IRAUyMontevideoUruguay
  3. 3.Unité INSERM UMR 1064Center for Research in Transplantation and ImmunologyNantesFrance

Personalised recommendations