Transgenic Research

, Volume 23, Issue 2, pp 303–315 | Cite as

Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids

  • Hisashi Harada
  • Takashi Maoka
  • Ayako Osawa
  • Jun-ichiro Hattan
  • Hirosuke Kanamoto
  • Kazutoshi Shindo
  • Toshihiko Otomatsu
  • Norihiko Misawa
Original Paper

Abstract

The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3′-hydroxylase (CrtZ) and β,β-carotenoid 4,4′-ketolase (4,4′-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8 %) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2 % of total carotenoids), astaxanthin monoester (18.2 %), and the free forms of astaxanthin (10.0 %) and the other ketocarotenoids (17.5 %), which indicated that artificial ketocarotenoids corresponded to 94.9 % of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8 %) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.

Keywords

Astaxanthin Carotenoid Lettuce Lactuca sativa Chloroplast transformation Pathway engineering 

Supplementary material

11248_2013_9750_MOESM1_ESM.pdf (270 kb)
Supplementary material 1 (PDF 271 kb)

References

  1. Ando S, Osada K, Hatano M, Saneyoshi M (1989) Comparison of carotenoids in muscle and ovary from four genera of salmonoid fishes. Comp Biochem Physiol 93B:503–508Google Scholar
  2. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhäuser Verlag, BaselCrossRefGoogle Scholar
  3. Choi SK, Nishida Y, Matsuda S, Adachi K, Kasai H, Peng X, Komemushi S, Miki W, Misawa N (2005) Characterization of β-carotene ketolases, CrtW, from marine bacteria by complementation analysis in Escherichia coli. Mar Biotechnol 7:515–522PubMedCrossRefGoogle Scholar
  4. Choi SK, Matsuda S, Hoshino T, Peng X, Misawa N (2006) Characterization of bacterial β-carotene 3,3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Appl Microbiol Biotechnol 72:1238–1246PubMedCrossRefGoogle Scholar
  5. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553PubMedCrossRefGoogle Scholar
  6. Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26CrossRefGoogle Scholar
  7. Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, Christou P (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48CrossRefGoogle Scholar
  8. Fraser PD, Enfissi EMA, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch Biochem Biophys 483:196–204PubMedCrossRefGoogle Scholar
  9. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key-enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332PubMedCrossRefGoogle Scholar
  10. Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645PubMedCrossRefGoogle Scholar
  11. Gloor A, Simon W (2007) Astaxanthin esters. United States Patent US 7,253,297 B2Google Scholar
  12. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedCrossRefGoogle Scholar
  13. Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55:857–868PubMedCrossRefGoogle Scholar
  14. Hirayama O, Nakamura K, Hamada S, Kobayashi Y (1994) Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 29:149–150PubMedCrossRefGoogle Scholar
  15. Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67PubMedCrossRefGoogle Scholar
  16. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501PubMedCrossRefGoogle Scholar
  17. Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa KI (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217PubMedCrossRefGoogle Scholar
  18. Kidd PM (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16:355–364PubMedGoogle Scholar
  19. Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269CrossRefGoogle Scholar
  20. Krinsky NI, Landrum JT, Bone RA (2003) Biological mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201PubMedCrossRefGoogle Scholar
  21. Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:1374–1393PubMedCrossRefGoogle Scholar
  22. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397PubMedCrossRefGoogle Scholar
  23. Maoka T, Etoh T, Kishimoto S, Sakata S (2011) Carotenoids and their fatty acid esters in the petals of Adonis aestivalis. J Oleo Sci 60:47–52PubMedCrossRefGoogle Scholar
  24. Maruyama T, Kasai H, Choi SK, Ramasamy AK, Inomata Y, Misawa N (2007) Structure of a complete carotenoid biosynthesis gene cluster of marine bacterium Paracoccus sp. strain N81106. Carotenoid Sci 11:50–55Google Scholar
  25. Matsuno T, Katsuyama M, Nagata S (1980) Comparative biochemical studies of carotenoids in fishes-XIX Carotenoids of chum salmon, coho salmon, biwa trout, red-spotted masu salmon, masu salmon, kokanee. Bull Jpn Soc Sci Fish 46:879–884CrossRefGoogle Scholar
  26. Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146CrossRefGoogle Scholar
  27. Milborrow BV (2001) The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J Exp Bot 52:1145–1164PubMedCrossRefGoogle Scholar
  28. Misawa N (2009) Pathway engineering of plants toward astaxanthin production. Plant Biotechnol 26:93–99CrossRefGoogle Scholar
  29. Morris WL, Ducreux LJ, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263PubMedCrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  31. Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K, Sawabe A, Komemushi S, Miki W, Misawa N (2005) Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 71:4286–4296PubMedCentralPubMedCrossRefGoogle Scholar
  32. Nishino H, Murakoshi M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21:257–264PubMedCrossRefGoogle Scholar
  33. Okada Y, Ishikura M, Maoka T (2009) Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci Biotechnol Biochem 73:1928–1932PubMedCrossRefGoogle Scholar
  34. Rogalski M, Carrer H (2011) Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol J 9:554–564PubMedCrossRefGoogle Scholar
  35. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  36. Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. Birkhäuser, Basel, pp 81–108Google Scholar
  37. Schiedt K, Bischof S, Glinz E (1995) Example 5: fish isolation of astaxanthin and its metabolites from skin of Atlantic salmon (Salmo salar). In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. Birkhäuser, Basel, pp 243–252Google Scholar
  38. Shindo K, Hasunuma T, Asagi E, Sano A, Hotta E, Minemura N, Miyake C, Maoka T, Misawa N (2008) 4-Ketoantheraxanthin, a novel carotenoid produced by the combination of the bacterial enzyme β-carotene ketolase CrtW and endogeneous carotenoid biosynthetic enzymes in higher plants. Tetrahedron Lett 49:3294–3296CrossRefGoogle Scholar
  39. Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Yano M (2012) High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal Japanese female subjects: prospective cohort study. PLoS ONE 7:e52643PubMedCentralPubMedCrossRefGoogle Scholar
  40. Talegawkar SA, Johnson EJ, Carithers TC, Taylor HA Jr, Bogle ML, Tucker KL (2008) Carotenoid intakes, assessed by food-frequency questionnaires (FFQs), are associated with serum carotenoid concentrations in the Jackson Heart Study: validation of the Jackson Heart Study Delta NIRI Adult FFQs. Public Health Nutr 11:989–997PubMedCentralPubMedCrossRefGoogle Scholar
  41. Tatsuzawa H, Maruyama T, Misawa N, Fujimori K, Nakano M (2000) Quenching of singlet oxygen by carotenoids produced in Escherichia coli-attenuation of singlet oxygen-mediated bacterial killing by carotenoids. FEBS Lett 484:280–284PubMedCrossRefGoogle Scholar
  42. Wolf AM, Asoh S, Hiranuma H, Ohsawa I, Iio K, Satou A, Ishikura M, Ohta S (2010) Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. J Nutr Biochem 21:381–389PubMedCrossRefGoogle Scholar
  43. Yamashita E (2006) The effects of a dietary supplement containing astaxanthin on skin condition. Carotenoid Sci 10:91–95Google Scholar
  44. Zhu C, Naqvi S, Breitenbach J, Sandamnn G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hisashi Harada
    • 1
    • 2
    • 5
  • Takashi Maoka
    • 1
    • 3
  • Ayako Osawa
    • 4
  • Jun-ichiro Hattan
    • 1
  • Hirosuke Kanamoto
    • 1
    • 2
  • Kazutoshi Shindo
    • 4
  • Toshihiko Otomatsu
    • 2
  • Norihiko Misawa
    • 1
  1. 1.Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichi-shiJapan
  2. 2.KNC Bio Research CenterKNC Laboratories Co., Ltd.KobeJapan
  3. 3.Research Institute for Production DevelopmentKyotoJapan
  4. 4.Department of Food and NutritionJapan Women’s UniversityTokyoJapan
  5. 5.Department of Chemistry and Biotechnology, Graduate School of EngineeringTottori UniversityTottori-shiJapan

Personalised recommendations