Advertisement

Transgenic Research

, Volume 22, Issue 6, pp 1107–1118 | Cite as

Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer

  • Zhenfang Wu
  • Zhiqian Xu
  • Xian Zou
  • Fang Zeng
  • Junsong Shi
  • Dewu Liu
  • Johann Urschitz
  • Stefan Moisyadi
  • Zicong Li
Original Paper

Abstract

The production of animals by somatic cell nuclear transfer (SCNT) is inefficient, with approximately 2 % of micromanipulated oocytes going to term and resulting in live births. However, it is the most commonly used method for the generation of cloned transgenic livestock as it facilitates the attainment of transgenic animals once the nuclear donor cells are stably transfected and more importantly as alternatives methods of transgenesis in farm animals have proven even less efficient. Here we describe piggyBac-mediated transposition of a transgene into porcine primary cells and use of these genetically modified cells as nuclear donors for the generation of transgenic pigs by SCNT. Gene transfer by piggyBac transposition serves to provide an alternative approach for the transfection of nuclear donor cells used in SCNT.

Keywords

piggyBac Transposon Transposase SCNT Cloning Transgenesis 

Notes

Acknowledgments

This study was supported by a grant from the National Science Foundation for Young Scholars of China (Grant Number: 31101689), a grant from the National High Technology Research and Development Program of China (863 Program, Grant Number: 2011AA100304), a grant from Department of Science and Technology of Guangdong, China (Grant Number: 2011A020901001) and by National Institutes of Health Grants 5P20RR024206 and R01 GM083158-01A1 (to S.M.).

References

  1. Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5(166):166ra161. doi: 10.1126/scitranslmed.3004853 CrossRefGoogle Scholar
  2. Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J, Forsythe T, Golueke P, Jurgella G, Koppang R, Lesmeister T, Mallon K, Mell G, Misica P, Pace M, Pfister-Genskow M, Strelchenko N, Voelker G, Watt S, Thompson S, Bishop M (2000) Production of cloned pigs from in vitro systems. Nat Biotechnol 18(10):1055–1059. doi: 10.1038/80242 CrossRefPubMedGoogle Scholar
  3. Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35(12):e87. doi: 10.1093/nar/gkm446 CrossRefPubMedGoogle Scholar
  4. Cao Z, Sui L, Li Y, Ji S, Zhang X, Zhang Y (2012) Effects of chemically defined medium on early development of porcine embryos derived from parthenogenetic activation and cloning. Zygote 20(3):229–236. doi: 10.1017/S0967199411000153 CrossRefPubMedGoogle Scholar
  5. Carlson DF, Garbe JR, Tan W, Martin MJ, Dobrinsky JR, Hackett PB, Clark KJ, Fahrenkrug SC (2011) Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res 20(5):1125–1137. doi: 10.1007/s11248-010-9481-7 CrossRefPubMedGoogle Scholar
  6. Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172(1):156–169CrossRefPubMedGoogle Scholar
  7. Deng W, Yang D, Zhao B, Ouyang Z, Song J, Fan N, Liu Z, Zhao Y, Wu Q, Nashun B, Tang J, Wu Z, Gu W, Lai L (2011) Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS One 6(5):e19986. doi: 10.1371/journal.pone.0019986 CrossRefPubMedGoogle Scholar
  8. Garcia-Vazquez FA, Ruiz S, Matas C, Izquierdo-Rico MJ, Grullon LA, De Ondiz A, Vieira L, Aviles-Lopez K, Gutierrez-Adan A, Gadea J (2010) Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 140(2):259–272. doi: 10.1530/REP-10-0129 CrossRefPubMedGoogle Scholar
  9. Garcia-Vazquez FA, Ruiz S, Grullon LA, de Ondiz A, Gutierrez-Adan A, Gadea J (2011) Factors affecting porcine sperm mediated gene transfer. Res Vet Sci 91(3):446–453. doi: 10.1016/j.rvsc.2010.09.015 CrossRefPubMedGoogle Scholar
  10. Gordon JW, Scangos GA, Plotkin DJ, Barbarosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384CrossRefPubMedGoogle Scholar
  11. Grandjean M, Girod PA, Calabrese D, Kostyrko K, Wicht M, Yerly F, Mazza C, Beckmann JS, Martinet D, Mermod N (2011) High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Res 39(15):e104. doi: 10.1093/nar/gkr436 CrossRefPubMedGoogle Scholar
  12. Jakobsen JE, Li J, Kragh PM, Moldt B, Lin L, Liu Y, Schmidt M, Winther KD, Schyth BD, Holm IE, Vajta G, Bolund L, Callesen H, Jorgensen AL, Nielsen AL, Mikkelsen JG (2011) Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res 20(3):533–545. doi: 10.1007/s11248-010-9438-x CrossRefPubMedGoogle Scholar
  13. Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C (1989) Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57(5):717–723CrossRefPubMedGoogle Scholar
  14. Li Z, Shi J, Liu D, Zhou R, Zeng H, Zhou X, Mai R, Zeng S, Luo L, Yu W, Zhang S, Wu Z (2013) Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning. Cell Reprogr 15(1):35–42. doi: 10.1089/cell.2012.0042 Google Scholar
  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  16. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295(5556):868–872CrossRefPubMedGoogle Scholar
  17. Marh J, Stoytcheva Z, Urschitz J, Sugawara A, Yamashiro H, Owens JB, Stoytchev I, Pelczar P, Yanagimachi R, Moisyadi S (2012) Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis. Proc Natl Acad Sci USA 109(47):19184–19189. doi: 10.1073/pnas.1216473109 CrossRefPubMedGoogle Scholar
  18. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry AC (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289(5482):1188–1190CrossRefPubMedGoogle Scholar
  19. Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS (2001) Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol 12(2):173–181CrossRefPubMedGoogle Scholar
  20. Perry AC, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R (1999) Mammalian transgenesis by intracytoplasmic sperm injection. Science 284(5417):1180–1183CrossRefPubMedGoogle Scholar
  21. Rinaudo P, Schultz RM (2004) Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128(3):301–311. doi: 10.1530/rep.1.00297 CrossRefPubMedGoogle Scholar
  22. Staunstrup NH, Madsen J, Primo MN, Li J, Liu Y, Kragh PM, Li R, Schmidt M, Purup S, Dagnaes-Hansen F, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG (2012) Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin. PLoS One 7(5):e36658. doi: 10.1371/journal.pone.0036658 CrossRefPubMedGoogle Scholar
  23. Urschitz J, Kawasumi M, Owens J, Morozumi K, Yamashiro H, Stoytchev I, Marh J, Dee JA, Kawamoto K, Coates CJ, Kaminski JM, Pelczar P, Yanagimachi R, Moisyadi S (2010) Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc Natl Acad Sci USA 107(18):8117–8122. doi: 10.1073/pnas.1003674107 CrossRefPubMedGoogle Scholar
  24. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374CrossRefPubMedGoogle Scholar
  25. Wall RJ (2001) Pronuclear microinjection. Cloning Stem Cells 3(4):209–220CrossRefPubMedGoogle Scholar
  26. Wall RJ, Pursel VG, Hammer RE, Brinster RL (1985) Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biol Reprod 32(3):645–651CrossRefPubMedGoogle Scholar
  27. Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105(27):9290–9295. doi: 10.1073/pnas.0801017105 CrossRefPubMedGoogle Scholar
  28. Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78(10–11):879–891. doi: 10.1002/mrd.21333 CrossRefPubMedGoogle Scholar
  29. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813. doi: 10.1038/385810a0 CrossRefPubMedGoogle Scholar
  30. Wu D, Luo S, Wang Y, Zhuang L, Chen Y, Peng C (2001) Smads in human trophoblast cells: expression, regulation and role in TGF-beta-induced transcriptional activity. Mol Cell Endocrinol 175(1–2):111–121CrossRefPubMedGoogle Scholar
  31. Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103(41):15008–15013CrossRefPubMedGoogle Scholar
  32. Wu Y, Liu CJ, Wan PC, Hao ZD, Zeng SM (2009) Factors affecting the efficiency of producing porcine embryos expressing enhanced green fluorescence protein by ICSI-mediated gene transfer method. Anim Reprod Sci 113(1–4):156–166. doi: 10.1016/j.anireprosci.2008.08.014 CrossRefPubMedGoogle Scholar
  33. Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108(4):1531–1536. doi: 10.1073/pnas.1008322108 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Zhenfang Wu
    • 1
  • Zhiqian Xu
    • 1
  • Xian Zou
    • 1
  • Fang Zeng
    • 1
  • Junsong Shi
    • 3
  • Dewu Liu
    • 2
  • Johann Urschitz
    • 4
  • Stefan Moisyadi
    • 4
  • Zicong Li
    • 1
  1. 1.Department of Animal Genetics, Breeding and ReproductionSouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Animal Production, College of Animal ScienceSouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  3. 3.Wen’s Research InstituteGuangdong Wen’s Food Group Co. Ltd.YunfuPeople’s Republic of China
  4. 4.Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations