Transgenic Research

, Volume 22, Issue 6, pp 1231–1239 | Cite as

Generation of c-Myc transgenic pigs for autosomal dominant polycystic kidney disease

  • Jianhua Ye
  • Jin He
  • Qiuyan Li
  • Yuanyuan Feng
  • Xueyuan Bai
  • Xiangmei Chen
  • Yaofeng Zhao
  • Xiaoxiang Hu
  • Zhengquan Yu
  • Ning LiEmail author
Brief Communication


After several decades of research, autosomal dominant polycystic kidney disease (ADPKD) is still incurable and imposes enormous physical, psychological, and economic burdens on patients and their families. Murine models of ADPKD represent invaluable tools for studying this disease. These murine forms of ADPKD can arise spontaneously, or they can be induced via chemical or genetic manipulations. Although these models have improved our understanding of the etiology and pathogenesis of ADPKD, they have not led to effective treatment strategies. The mini-pig represents an effective biomedical model for studying human diseases, as the pig’s human-like physiological processes help to understand disease mechanisms and to develop novel therapies. Here, we tried to generate a transgenic model of ADPKD in pigs by overexpressing c-Myc in kidney tissue. Western-blot analysis showed that c-Myc was overexpressed in the kidney, brain, heart, and liver of transgenic pigs. Immunohistochemical staining of kidney tissue showed that exogenous c-Myc predominantly localized to renal tubules. Slightly elevated blood urea nitrogen levels were observed in transgenic pigs 1 month after birth, but no obvious abnormalities were detected after that time. In the future, we plan to subject this model to renal injury in an effort to promote ADPKD progression.


ADPKD c-Myc Pig Disease model 



This study was funded by the Chinese National Basic Research Program (“973” Program) (Project No. 2011CB944100).


  1. Al-Shawi R, Kinnaird J, Burke J, Bishop JO (1990) Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect. Mol Cell Biol 10(3):1192–1198PubMedGoogle Scholar
  2. Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF, Fonseca JM, Fonseca II, Germino GG, Onuchic LF (2009) Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J Am Soc Nephrol JASN 20(11):2389–2402. doi: 10.1681/ASN.2008040435 CrossRefGoogle Scholar
  3. Bell PD, Fitzgibbon W, Sas K, Stenbit AE, Amria M, Houston A, Reichert R, Gilley S, Siegal GP, Bissler J, Bilgen M, Chou PC, Guay-Woodford L, Yoder B, Haycraft CJ, Siroky B (2011) Loss of primary cilia upregulates renal hypertrophic signaling and promotes cystogenesis. J Am Soc Nephrol JASN 22(5):839–848. doi: 10.1681/ASN.2010050526 CrossRefGoogle Scholar
  4. Bonventre JV, Vaidya VS, Schmouder R, Feig P, Dieterle F (2010) Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 28(5):436–440. doi: 10.1038/nbt0510-436 PubMedCrossRefGoogle Scholar
  5. Brasier JL, Henske EP (1997) Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Investig 99(2):194–199. doi: 10.1172/JCI119147 PubMedCrossRefGoogle Scholar
  6. Burtey S, Riera M, Ribe E, Pennekamp P, Passage E, Rance R, Dworniczak B, Fontes M (2008) Overexpression of PKD2 in the mouse is associated with renal tubulopathy. Nephrol Dial Transplant 23(4):1157–1165. doi: 10.1093/ndt/gfm763 PubMedCrossRefGoogle Scholar
  7. Cowley BD Jr, Smardo FL Jr, Grantham JJ, Calvet JP (1987) Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc Natl Acad Sci USA 84(23):8394–8398PubMedCrossRefGoogle Scholar
  8. Cowley BD Jr, Chadwick LJ, Grantham JJ, Calvet JP (1991) Elevated proto-oncogene expression in polycystic kidneys of the C57BL/6J (cpk) mouse. J Am Soc Nephrol JASN 1(8):1048–1053Google Scholar
  9. Cuppen E (2010) DNA isolation from rat tail or ear. Cold Spring Harb Protoc (5): pdb prot5434. doi: 10.1101/pdb.prot5434
  10. Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, Rechavi G, Friedman N, Kaminski N, Passwell JH, Reisner Y (2003) Human and porcine early kidney precursors as a new source for transplantation. Nat Med 9(1):53–60. doi: 10.1038/nm812 PubMedCrossRefGoogle Scholar
  11. Dooley JJ, Paine KE, Garrett SD, Brown HM (2004) Detection of meat species using TaqMan real-time PCR assays. Meat Sci 68(3):431–438. doi: 10.1016/j.meatsci.2004.04.010 PubMedCrossRefGoogle Scholar
  12. Douglas WR (1972) Of pigs and men and research: a review of applications and analogies of the pig, Sus scrofa, in human medical research. Space Life Sci 3(3):226–234PubMedGoogle Scholar
  13. Gabow PA (1993) Autosomal dominant polycystic kidney disease. New Engl J Med 329(5):332–342. doi: 10.1056/NEJM199307293290508 PubMedCrossRefGoogle Scholar
  14. Grantham JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. New Engl J Med 359(14):1477–1485. doi: 10.1056/NEJMcp0804458 PubMedCrossRefGoogle Scholar
  15. Happe H, Leonhard WN, van der Wal A, van de Water B, Lantinga-van Leeuwen IS, Breuning MH, de Heer E, Peters DJ (2009) Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum Mol Genet 18(14):2532–2542. doi: 10.1093/hmg/ddp190 PubMedCrossRefGoogle Scholar
  16. Harlow E, Lane D (2006) Immunoblotting: submerged electrophoretic transfer of proteins from gels to membranes. CSH Protoc (1). doi: 10.1101/pdb.prot4302
  17. Harris PC (2010) What is the role of somatic mutation in autosomal dominant polycystic kidney disease? J Am Soc Nephrol 21(7):1073–1076. doi: 10.1681/ASN.2010030328 PubMedCrossRefGoogle Scholar
  18. Hassane S, Claij N, Lantinga-van Leeuwen IS, Van Munsteren JC, Van Lent N, Hanemaaijer R, Breuning MH, Peters DJ, DeRuiter MC (2007) Pathogenic sequence for dissecting aneurysm formation in a hypomorphic polycystic kidney disease 1 mouse model. Arterioscler Thromb Vasc Biol 27(10):2177–2183. doi: 10.1161/ATVBAHA.107.149252 PubMedCrossRefGoogle Scholar
  19. He J, Wang Q, Ye J, Hu X, Li N (2011) Identification of porcine polycystic kidney disease 1 (PKD1) gene: molecular cloning, expression profile, and implication in disease model. Gene 490(1–2):37–46. doi: 10.1016/j.gene.2011.08.027 PubMedCrossRefGoogle Scholar
  20. Hopp K, Ward CJ, Hommerding CJ, Nasr SH, Tuan HF, Gainullin VG, Rossetti S, Torres VE, Harris PC (2012) Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Investig 122(11):4257–4273. doi: 10.1172/JCI64313 PubMedCrossRefGoogle Scholar
  21. Igarashi P, Shashikant CS, Thomson RB, Whyte DA, Liu-Chen S, Ruddle FH, Aronson PS (1999) Ksp-cadherin gene promoter. II. Kidney-specific activity in transgenic mice. Am J Physiol 277(4 Pt 2):F599–F610PubMedGoogle Scholar
  22. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, Swain JL (1991) Transgenic animals as a tool for studying the effect of the c-myc proto-oncogene on cardiac development. Mol Cell Biochem 104(1–2):15–19PubMedGoogle Scholar
  23. Kim I, Li C, Liang D, Chen XZ, Coffy RJ, Ma J, Zhao P, Wu G (2008) Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem 283(46):31559–31566. doi: 10.1074/jbc.M805452200 PubMedCrossRefGoogle Scholar
  24. Koptides M, Hadjimichael C, Koupepidou P, Pierides A, Constantinou Deltas C (1999) Germinal and somatic mutations in the PKD2 gene of renal cysts in autosomal dominant polycystic kidney disease. Hum Mol Genet 8(3):509–513. doi: 10.1093/hmg/8.3.509 PubMedCrossRefGoogle Scholar
  25. Kurbegovic A, Cote O, Couillard M, Ward CJ, Harris PC, Trudel M (2010) Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Hum Mol Genet 19(7):1174–1189. doi: 10.1093/hmg/ddp588 PubMedCrossRefGoogle Scholar
  26. Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13(6):1153–1160PubMedGoogle Scholar
  27. Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, Deruiter MC, Breuning MH, de Heer E, Peters DJ (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13(24):3069–3077. doi: 10.1093/hmg/ddh336 PubMedCrossRefGoogle Scholar
  28. Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A, Breuning MH, de Heer E, Peters DJ (2007) Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet 16(24):3188–3196. doi: 10.1093/hmg/ddm299 PubMedCrossRefGoogle Scholar
  29. Liu S, Li X, Lu D, Shang S, Wang M, Zheng M, Zhang R, Tang B, Li Q, Dai Y, Li N (2012) High-level expression of bioactive recombinant human lysozyme in the milk of transgenic mice using a modified human lactoferrin BAC. Transgenic Res 21(2):407–414. doi: 10.1007/s11248-011-9536-4 PubMedCrossRefGoogle Scholar
  30. Machida N, Brissie N, Sreenan C, Bishop SP (1997) Inhibition of cardiac myocyte division in c-myc transgenic mice. J Mol Cell Cardiol 29(7):1895–1902. doi: 10.1006/jmcc.1997.0427 PubMedCrossRefGoogle Scholar
  31. Martinez JR, Grantham JJ (1995) Polycystic kidney disease: etiology, pathogenesis, and treatment. Dis Month DM 41(11):693–765CrossRefGoogle Scholar
  32. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990. doi: 10.1038/nrc2231 PubMedCrossRefGoogle Scholar
  33. Murcia NS, Sweeney WE Jr, Avner ED (1999) New insights into the molecular pathophysiology of polycystic kidney disease. Kidney Int 55(4):1187–1197. doi: 10.1046/j.1523-1755.1999.00370.x PubMedCrossRefGoogle Scholar
  34. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA, Brown-Swigart L, Johnson L, Evan GI (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14(6):447–457. doi: 10.1016/j.ccr.2008.10.018 PubMedCrossRefGoogle Scholar
  35. Nadasdy T, Laszik Z, Lajoie G, Blick KE, Wheeler DE, Silva FG (1995) Proliferative activity of cyst epithelium in human renal cystic diseases. J Am Soc Nephrol 5(7):1462–1468PubMedGoogle Scholar
  36. Nilsson LM, Forshell TZ, Rimpi S, Kreutzer C, Pretsch W, Bornkamm GW, Nilsson JA (2012) Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet 8(3):e1002573. doi: 10.1371/journal.pgen.1002573 PubMedCrossRefGoogle Scholar
  37. Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, Germino G, St George-Hyslop P (1999) Somatic PKD2 mutations in individual kidney and liver cysts support a “two-hit” model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 10(7):1524–1529PubMedGoogle Scholar
  38. Pei Y, Moore CE, Wang J, Tewari AK, Eroshkin A, Cho YJ, Witt H, Korshunov A, Read TA, Sun JL, Schmitt EM, Miller CR, Buckley AF, McLendon RE, Westbrook TF, Northcott PA, Taylor MD, Pfister SM, Febbo PG, Wechsler-Reya RJ (2012) An animal model of MYC-driven medulloblastoma. Cancer Cell 21(2):155–167. doi: 10.1016/j.ccr.2011.12.021 PubMedCrossRefGoogle Scholar
  39. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13(12):1490–1495. doi: 10.1038/nm1675 PubMedCrossRefGoogle Scholar
  40. Pritchard L, Sloane-Stanley JA, Sharpe JA, Aspinwall R, Lu W, Buckle V, Strmecki L, Walker D, Ward CJ, Alpers CE, Zhou J, Wood WG, Harris PC (2000) A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum Mol Genet 9(18):2617–2627PubMedCrossRefGoogle Scholar
  41. Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87(6):979–987. doi: 10.1016/S0092-8674(00)81793-6 PubMedCrossRefGoogle Scholar
  42. Reiner G, Hecht W, Leeb T, Brenig B, Robic A, Dzapo V (1999) Isolation and characterization of the porcine c-myc proto-oncogene and chromosomal assignment to SSC 4p13. Anim Genet 30(3):204–206PubMedCrossRefGoogle Scholar
  43. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wuthrich RP (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. New Engl J Med 363(9):820–829. doi: 10.1056/NEJMoa0907419 PubMedCrossRefGoogle Scholar
  44. Shao X, Johnson JE, Richardson JA, Hiesberger T, Igarashi P (2002) A minimal Ksp-cadherin promoter linked to a green fluorescent protein reporter gene exhibits tissue-specific expression in the developing kidney and genitourinary tract. J Am Soc Nephrol 13(7):1824–1836PubMedCrossRefGoogle Scholar
  45. Soucek L, Evan GI (2010) The ups and downs of Myc biology. Curr Opin Genet Dev 20(1):91–95. doi: 10.1016/j.gde.2009.11.001 PubMedCrossRefGoogle Scholar
  46. Swindle MM, Moody DC, Phillips LD (1992) Swine as models in biomedical research, 1st edn. Iowa State University Press, AmesGoogle Scholar
  47. Takakura A, Contrino L, Beck AW, Zhou J (2008) Pkd1 inactivation induced in adulthood produces focal cystic disease. J Am Soc Nephrol 19(12):2351–2363. doi: 10.1681/ASN.2007101139 PubMedCrossRefGoogle Scholar
  48. Takakura A, Contrino L, Zhou X, Bonventre JV, Sun Y, Humphreys BD, Zhou J (2009) Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum Mol Genet 18(14):2523–2531. doi: 10.1093/hmg/ddp147 PubMedCrossRefGoogle Scholar
  49. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369(9569):1287–1301. doi: 10.1016/S0140-6736(07)60601-1 PubMedCrossRefGoogle Scholar
  50. Trudel M, D’Agati V, Costantini F (1991) C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 39(4):665–671PubMedCrossRefGoogle Scholar
  51. Trudel M, Chretien N, D’Agati V (1994) Disappearance of polycystic kidney disease in revertant c-myc transgenic mice. Mamm Genome 5(3):149–152PubMedCrossRefGoogle Scholar
  52. Trudel M, Barisoni L, Lanoix J, D’Agati V (1998) Polycystic kidney disease in SBM transgenic mice: role of c-myc in disease induction and progression. Am J Pathol 152(1):219–229PubMedGoogle Scholar
  53. Verdeguer F, Le Corre S, Fischer E, Callens C, Garbay S, Doyen A, Igarashi P, Terzi F, Pontoglio M (2010) A mitotic transcriptional switch in polycystic kidney disease. Nat Med 16(1):106–110. doi: 10.1038/nm.2068 PubMedCrossRefGoogle Scholar
  54. Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N, Arns W, Pavenstadt H, Gaedeke J, Buchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. New Engl J Med 363(9):830–840. doi: 10.1056/NEJMoa1003491 PubMedCrossRefGoogle Scholar
  55. Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, Klinger KW, Landes G, Germino GG (1998) Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 2(2):247–251. doi: 10.1016/S1097-2765(00)80135-5 PubMedCrossRefGoogle Scholar
  56. Wei HX, Zhang K, Ma YF, Li Y, Li QY, Dai YP, Li N (2009) Stage-dependent effect of leptin on development of porcine embryos derived from parthenogenetic activation and transgenic somatic cell nuclear transfer. J Reprod Dev 55(2):99–104PubMedCrossRefGoogle Scholar
  57. Weimbs T (2011) Third-hit signaling in renal cyst formation. J Am Soc Nephrol 22(5):793–795. doi: 10.1681/ASN.2011030284 PubMedCrossRefGoogle Scholar
  58. Whyte DA, Li C, Thomson RB, Nix SL, Zanjani R, Karp SL, Aronson PS, Igarashi P (1999) Ksp-cadherin gene promoter. I. Characterization and renal epithelial cell-specific activity. Am J Physiol 277(4 Pt 2):F587–F598PubMedGoogle Scholar
  59. Wilson PD (2004) Polycystic kidney disease. New Engl J Med 350(2):151–164. doi: 10.1056/NEJMra022161 PubMedCrossRefGoogle Scholar
  60. Xiao G, Mao S, Baumgarten G, Serrano J, Jordan MC, Roos KP, Fishbein MC, MacLellan WR (2001) Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 89(12):1122–1129. doi: 10.1161/hh2401.100742 PubMedCrossRefGoogle Scholar
  61. Yu Shu-min WC-w, Zhao De-ming, Zhang Qing-cai, Pei De-zhi (2003) Raising and pathogen purification of Chinese experimental mini-pig. Lab Anim Sci Manag 20(2):44–46Google Scholar
  62. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Mates JM, Alonso FJ, Wang C, Seo Y, Chen X, Bishop JM (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15(2):157–170. doi: 10.1016/j.cmet.2011.12.015 PubMedCrossRefGoogle Scholar
  63. Zaidi A, Schmoeckel M, Bhatti F, Waterworth P, Tolan M, Cozzi E, Chavez G, Langford G, Thiru S, Wallwork J, White D, Friend P (1998) Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65(12):1584–1590PubMedCrossRefGoogle Scholar
  64. Zhang Y, Pan D, Sun X, Sun G, Wang X, Liu X, Li Y, Dai Y, Li N (2006) Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer. Sci China Ser C Life Sci Chin Acad Sci 49(2):164–171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jianhua Ye
    • 1
  • Jin He
    • 1
  • Qiuyan Li
    • 1
  • Yuanyuan Feng
    • 2
  • Xueyuan Bai
    • 2
  • Xiangmei Chen
    • 2
  • Yaofeng Zhao
    • 1
  • Xiaoxiang Hu
    • 1
  • Zhengquan Yu
    • 1
  • Ning Li
    • 1
    Email author
  1. 1.State Key Laboratory for AgrobiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.Department of Nephrology, State Key Laboratory of Kidney DiseasesChinese P.L.A. General HospitalBeijingChina

Personalised recommendations