Transgenic Research

, Volume 22, Issue 2, pp 255–267

Plurality of opinion, scientific discourse and pseudoscience: an in depth analysis of the Séralini et al. study claiming that Roundup™ Ready corn or the herbicide Roundup™ cause cancer in rats

  • Gemma Arjó
  • Manuel Portero
  • Carme Piñol
  • Juan Viñas
  • Xavier Matias-Guiu
  • Teresa Capell
  • Andrew Bartholomaeus
  • Wayne Parrott
  • Paul Christou
Perspective

Abstract

A recent paper published in the journal Food and Chemical Toxicology presents the results of a long-term toxicity study related to a widely-used commercial herbicide (Roundup™) and a Roundup-tolerant genetically modified variety of maize, concluding that both the herbicide and the maize varieties are toxic. Here we discuss the many errors and inaccuracies in the published article resulting in highly misleading conclusions, whose publication in the scientific literature and in the wider media has caused damage to the credibility of science and researchers in the field. We and many others have criticized the study, and in particular the manner in which the experiments were planned, implemented, analyzed, interpreted and communicated. The study appeared to sweep aside all known benchmarks of scientific good practice and, more importantly, to ignore the minimal standards of scientific and ethical conduct in particular concerning the humane treatment of experimental animals.

Keywords

Safety assessment GM crops Toxicity GM maize 

References

  1. Arjó G, Capell T, Matias-Guiu X, Zhu C, Christou P, Piñol C (2012) Mice fed on a diet enriched with genetically engineered multivitamin corn show no sub-acute toxic effects and no sub-chronic toxicity. Plant Biotechnol J 10:1026–1034PubMedCrossRefGoogle Scholar
  2. Bernhardt AG (2012) Peru verbietet genmanipulierte Pflanzen. JungeWelt, 22 Nov 2012 (http://www.jungewelt.de/2012/11-22/032.php)
  3. Butler D (2012) Hyped GM maize study faces growing scrutiny (http://www.nature.com/news/hyped-gm-maize-study-faces-growing-scrutiny-1.11566)
  4. Chassy BM (2010) Can—omics inform a food safety assessment. Regul Toxicol Pharmacol 58:S62–S70PubMedCrossRefGoogle Scholar
  5. Davis RK, Stevenson GT, Busch KA (1956) Tumor incidence in normal Sprague-Dawley female rats. Cancer Res 16:194–197PubMedGoogle Scholar
  6. Elias PS (1980) The wholesomeness of irradiated food. Ecotoxicol Environ Saf 4:172–183PubMedCrossRefGoogle Scholar
  7. Entine J (2012) Anti-GM corn study reconsidered: Séralini finally responds to torrent of criticism (http://www.geneticliteracyproject.org/2012/11/19/anti-gm-corn-study-reconsidered-seralini-finally-responds-to-torrent-of-criticism/)
  8. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S (2006a) Multi- and megavariate data analysis part II advanced applications and method extensions. Umetrics Academy, UmeaGoogle Scholar
  9. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2006b) Multi and megavariate data analysis part I—principles and applications. Umetrics Academy, UmeaGoogle Scholar
  10. European Union (2010) Directive 2010/63/EU of the European Parliament and of the council of 22 Sept 2010Google Scholar
  11. European Food Safety Authority (2012) Review of the Séralini et al. (2012) publication on a 2-year rodent feeding study with glyphosate formulations and GM maize NK603 as published online on 19 September 2012 in Food and Chemical Toxicology. EFSA J 10:2910–2919Google Scholar
  12. Fanelli D (2009) How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS One 4:e5738PubMedCrossRefGoogle Scholar
  13. Farre G, Ramessar K, Twyman RM, Capell T, Christou P (2010) The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Curr Opin Plant Biol 13:219–225PubMedCrossRefGoogle Scholar
  14. Farre G, Twyman RM, Zhu C, Capell T, Christou P (2011) Nutritionally enhanced crops and food security: scientific achievements versus political expediency. Curr Opin Biotechnol 22:245–251PubMedCrossRefGoogle Scholar
  15. He XY, Tang MZ, Luo YB, Li X, Cao SS, Yu JJ, Delaney B, Huang KL (2009) A 90-day toxicology study of transgenic lysine-rich maize grain (Y642) in Sprague-Dawley rats. Food Chem Toxicol 47:425–432PubMedCrossRefGoogle Scholar
  16. Institut Borja de Bioètica (2012) Francesc Abel i la Biotètica, un llegat per a la vida, 1st edn. Editorial ProteusGoogle Scholar
  17. Kano H, Suzuki M, Senoh H, Yamazaki K, Aiso S, Matsumoto M, Nagano K, Fukushima S (2012) 2,4-Dichloro-1-nitrobenzene exerts carcinogenicities in both rats and mice by two years feeding. Arch Toxicol 86:1763–1772PubMedCrossRefGoogle Scholar
  18. Keenan KP, Soper KA, Smith PF, Ballam GC, Clark RL (1996) Diet, overfeeding, and moderate dietary restriction in control Sprague-Dawley rats: I. Effects on spontaneous neoplasms. Toxicol Pathol 23:269–286CrossRefGoogle Scholar
  19. Lenth RV (2001) Some practical guidelines for effective sample size determination. Am Stat 55:187–193CrossRefGoogle Scholar
  20. Liu P, He X, Chen D, Luo Y, Cao S, Song H, Ting L, Kunlun H, Xu W (2012) A 90-day subchronic feeding study of genetically modified maize expressing Cry1Ac-M protein in Sprague-Dawley rats. Food Chem Toxicol 50:3215–3221PubMedCrossRefGoogle Scholar
  21. MacKenzie SA, Lamb I, Schmidt J, Deege L, Morrisey MJ, Harper M, Layton RJ, Prochaska LM, Sanders C, Locke M, Mattsson JL, Fuentes A, Delaney B (2007) Thirteen week feeding study with transgenic maize grain containing event DAS-Ø15Ø7-1 in Sprague-Dawley rats. Food Chem Toxicol 45:551–562PubMedCrossRefGoogle Scholar
  22. Office of Science and Technology Policy (2000) Federal policy on research misconduct—preamble for research misconduct policy. US Federal Register 65, pp 76260–76264Google Scholar
  23. Otabe A, Fujieda T, Masuyama T (2011) Chronic toxicity and carcinogenicity of N-[N-[3-(3-hydroxy-4-methoxyphenyl) propyl]-α-aspart. Food Chem Toxicol 49:S35–S48PubMedCrossRefGoogle Scholar
  24. Potter VR (1971) Bioethics: bridge to the future. Prentice Hall, New JerseyGoogle Scholar
  25. Prejean JD, Peckham JC, Casey AE, Griswold DP, Weisburger EK, Weisburger JH (1973) Spontaneous tumors in Sprague-Dawley rats and Swiss mice. Cancer Res 33:2768–2773PubMedGoogle Scholar
  26. Owino O (2012) Scientists torn over Kenya’s recent GM food ban (http://www.nature.com/news/scientists-torn-over-kenya-s-recent-gm-food-ban-1.11929)
  27. Sakamoto Y et al (2008) A 104-week feeding study of genetically modified soybeans in F344rats. J Food Hyg Soc Jpn 49:272–282 (Article in Japanese; Abstract, Figures and Tables in English)Google Scholar
  28. Séralini GE, Clair E, Mesnage R, Gress S, Defarge N, Malatesta M, Hennequin D, Spiroux de Vendômois J (2012) Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem Toxicol 50:4221–4231PubMedCrossRefGoogle Scholar
  29. Snell C, Bernheim A, Berge JB, Kuntz M, Pascal G, Paris A, Ricroch AE (2012) Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxicol 50:1134–1148PubMedCrossRefGoogle Scholar
  30. Suzuki H, Mohr U, Kimmerle G (1979) Spontaneous endocrine tumors in Sprague-Dawley rats. J Cancer Res Clin Oncol 95:187–196PubMedCrossRefGoogle Scholar
  31. Tang M, Xie T, Cheng W, Qian L, Yang S, Yang D, Cui W, Li K (2012) A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Transgenic Res 21:499–510PubMedCrossRefGoogle Scholar
  32. Thompson SW, Huseby RA, Fox MA, Davis CL, Hunt RD (1961) Spontaneous tumors in the Sprague-Dawley rat. J Natl Cancer Inst 27:1037–1057PubMedGoogle Scholar
  33. Twyman RM, Ramessar K, Quemada H, Capell T, Christou P (2009) Plant biotechnology: the importance of being accurate. Trends Biotechnol 27:609–612PubMedCrossRefGoogle Scholar
  34. Weljie AM, Bondareva A, Zang P, Jirik FR (2011) 1H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system. J Biomol 49:185–193CrossRefGoogle Scholar
  35. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, GenevaGoogle Scholar
  36. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122PubMedCrossRefGoogle Scholar
  37. Zhu Y, He X, Luo Y, Zou S, Xin Z, Huang K, Xu W (2012) A 90-day feeding study of glyphosate-tolerant maize with the G2-aroA gene. Food Chem Toxicol 18:280–287Google Scholar

Supplementary references

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gemma Arjó
    • 1
  • Manuel Portero
    • 2
  • Carme Piñol
    • 1
  • Juan Viñas
    • 3
    • 4
  • Xavier Matias-Guiu
    • 4
    • 5
  • Teresa Capell
    • 6
  • Andrew Bartholomaeus
    • 7
    • 8
  • Wayne Parrott
    • 9
  • Paul Christou
    • 6
    • 10
  1. 1.Departament de MedicinaUniversitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaSpain
  2. 2.Departament de Medicina ExperimentalUniversitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaSpain
  3. 3.Departament de CirurgiaUniversitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaSpain
  4. 4.Hospital Universitari Arnau de VilanovaLleidaSpain
  5. 5.Departament de Ciències Mèdiques BàsiquesUniversitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida)LleidaSpain
  6. 6.Departament de Producció Vegetal i Ciència ForestalUniversitat de Lleida-Agrotecnio CenterLleidaSpain
  7. 7.School of PharmacyUniversity of CanberraCanberraAustralia
  8. 8.Therapeutic Research Unit, School of MedicineUniversity of QueenslandBrisbaneAustralia
  9. 9.Department of Crop and Soil Sciences, Institute for Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensUSA
  10. 10.Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations